Name of the College: Government College of Arts, Science and Commerce, Sanquelim-Goa							
Name of Faculty: Minoshka D'Souza	Subject: Mathematics						
Paper code: MAT 500 - Real Analysis	Program: M.Sc. Mathematics	Division: -					
Academic year: 2024-25	Semester:	Total Lectures: 60					
Course Objectives: This course will develop fundamental concepts in Real Analysis and make the student acquainted with tools of analysis which is essential for the study and appreciation of many related branches of mathematics and applications.							
Course Outcome: On completion of this course the learner will be familiar with various topics including real number system, sequences, limits and continuity and derivatives.							
 Recall and explain concepts in the real number system, finite sets and countability, sequences, continuity and derivatives Prove important theorems related to topics studied. Apply knowledge gained to solve basic mathematical problems in real analysis and metric spaces. Analyse, compare and differentiate between various concepts studied in order to solve problems. 							

Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise/ Assignment	ICT Tools	Reference books
June	28/06/2024	29/06/2024	2	Real Number System: Peano's Axioms for Natural Numbers and Induction Principle	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
	01/07/2024	06/07/2024	4	Real Number System: Peano's Axioms for Natural Numbers and Induction Principle, equivalence of induction, strong induction and the well-ordering principle, Integers and Rational numbers (Discussion)	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
July	08/07/2024	13/07/2024	4	Real Number System: Ordered sets and LUB Property, Ordered Field Axioms Field of Real Numbers and Completeness, Archimedean property, integral part of a real number, density of rationals and irrationals in the reals	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
	15/07/2024	20/07/2024	4	Real Number System: Existence of roots of nonnegative reals, proof of existence of decimal representation of reals, Extended Real Number System, Finite sets, cardinality of finite sets, Subset of finite sets, a proper subset of a finite set has cardinality strictly less that the super set	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol

	22/07/2024	27/07/2024	4	Real Number System: Countable sets – definition and equivalent reformulations of countability, Countability of unions and Cartesian products of sets, Uncountable sets, Countability of Rationals, Uncountability of Reals	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
July August	29/07/2024	03/08/2024	4	Elements of Point Set Topology: Metric Spaces, Euclidean Spaces, Open balls and Open sets in Euclidean Spaces, Structure of open sets in Euclidean Spaces, Adherent points and Accumulation points	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
	05/08/2024	10/08/2024	4	Elements of Point Set Topology: Closed sets, Perfect sets, Every non-empty perfect set of is uncountable, Bolzano- Weierstrass Theorem, Cantor Intersection Theorem, Lindelof Covering Theorem, The Heine-Borel Covering Theorem	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
August	12/08/2024	17/08/2024	4	Elements of Point Set Topology: Compactness in , Compactness in metric spaces, Connected sets in metric spaces, Connected subsets of R	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
	19/08/2024	24/08/2024	4	Elements of Point Set Topology: Cantor set-construction and basic properties, Cantor set and ternary expansion.	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol

				Limits and Continuity: Convergent sequences in a Metric space			
	26/08/2024	31/08/2024	4	Limits and Continuity: Cauchy sequences and Complete metric spaces, Limit inferior and Limit superior of a sequence, Limit of a Function- (Real valued, complex valued, vector valued functions)	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
September	02/09/2024	07/09/2024	2	Limits and Continuity: Continuous Functions, Continuity and Compactness, Continuity and Connectedness	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
	09/09/2024	14/09/2024	2	Limits and Continuity: Bolzano's Theorem and Intermediate value Theorem, Uniform Continuity,	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
	16/09/2024	21/09/2024	4	Limits and Continuity: Uniform Continuity and Compactness, Discontinuities of Real valued Functions, Monotonic Functions, Infinite limits and Limits at infinity	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
	23/09/2024	28/09/2024	4	Derivatives: Derivatives and Continuity, Algebra of Derivatives and Chain rule, One sided derivatives and Infinite Derivatives	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
September October	30/09/2024	05/10/2024	2	Derivatives: Functions with non-zero derivatives, Zero derivatives and Local extrema	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol

October	07/10/2024	12/10/2024	4	Derivatives: Rolle's Theorem, Mean value Theorems and consequences, Intermediate value Theorem for Derivatives, Taylor's Formula with Remainder	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
	14/10/2024	19/10/2024	4	Derivatives: Derivatives of Vector valued Functions and Complex valued Functions, Derivatives of Higher Order, L'Hospital's Rules with proof.	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol
	21/10/2024	23/10/2024	4	Revision	Exercises on topics covered	Latex, Smart Board	Mathematical Analysis by Tom Apostol

* Assessment Rubrics

Compone	Max
nt	Marks
ISA 1	20
ISA 2	20
ISA 3	20
Semester	
End Exam	40