Name of the College: Government College of Arts, Science and Commerce, Sanquelim-Goa						
Name of Faculty: Aaron Alphonso	Subject: Algebra					
Paper code: MAT - 502	Program: M.Sc.	Division: -I				
Academic year: 2024-25	Semester: III	Total Lectures: 60				
Course Objectives: The student will Expected Course Outcome: On cor	learn the basic concepts in Group Actions on a Set, Son a					
Course Objectives: The student will						
Course Objectives: The student will Expected Course Outcome: On cor Polynomial Rings Student Learning Outcome: At the o	npletion of the course the student will be familiar wit end of this course a student will be able to					
Course Objectives: The student will Expected Course Outcome: On cor Polynomial Rings Student Learning Outcome: At the o 1. Recollect and explain var	npletion of the course the student will be familiar wit end of this course a student will be able to ious concepts in Algebra					
Course Objectives: The student will Expected Course Outcome: On corr Polynomial Rings Student Learning Outcome: At the of 1. Recollect and explain var 2. Prove important theorems 3. Apply various concepts of	npletion of the course the student will be familiar wit end of this course a student will be able to ious concepts in Algebra					

Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise/ Assignment	ICT Tools	Reference books
June	18/06/2024	22/06/2024	4	Permutation Groups: Symmetric Groups, Permutation Groups, Alternating Groups, Group Actions, Orbit and Stabilizers, Caley's Theorem	Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote
	24/06/2024	29/06/2024	4	Series of Groups: Subnormal Normal Series, Jordan Holders Theorem	Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote
July	01/07/2024	06/07/2024	4	Series of Groups: Jordan Holders Theorem	Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote

	08/07/2024	13/07/2024	4	Syllows Theorem: Applications of Sylow Theorems, Finite Simple Groups	Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote
	15/07/2024	20/07/2024	4	Syllows Theorem: Non simplicity Tests, The simplicity of <i>A5</i>	Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote
	22/07/2024	27/07/2024	4	Rings and Fields: Rings, Fields, Integral Domains-definiti ons and Examples, Characteristic of Rings. Ideals and Factor Rings.	Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote
July August	29/07/2024	03/08/2024	4	Rings and Fields: Prime ideals and Maximal ideals,	Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract

							Algebra, Dummit and
							Foote
	05/08/2024	10/08/2024	4	Rings and Fields: Ring Homomorphisms , Field of Quotients of and Integral Domain.	Problem	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote
August	12/08/2024	17/08/2024	4	Polynomial Rings and Factorization of Polynomials: Polynomial Rings-Notations and Terminologies, The Division Algorithm and its consequences.	Solving Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote
	19/08/2024	24/08/2024	4	Polynomial Rings and Factorization of Polynomials: Mod p Test for irreducibility over UFD.	Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote
	26/08/2024	31/08/2024	4	Polynomial Rings and Factorization of Polynomials: Gauss Lemma over UFD, Eienstein Criterion, g.c.d., l.c.m., in UFD. In UFD R,	Problem Solving	Smart Board PDF, Lapto	A First Course in Abstract Algebra, Fraleigh, Contemporary

						р,	Abstract Algebra,
						Latex	Gallian, Abstract
							Algebra, Dummit and
							Foote
				Polynomial Rings and Factorization		Smart	A First Course in
				of Polynomials: f(x) in R[x] is		Board	Abstract Algebra,
				irreducible iff $f(x)$ is irreduclible over the field of quotients of R		PDF, Lapto	Fraleigh, Contemporary
	02/09/2024	07/09/2024	2	over the field of quotients of it		p,	Abstract Algebra,
						Latex	Gallian, Abstract
					Problem		Algebra, Dummit and
					Solving		Foote
	09/09/2024	14/09/2024	2				
				Polynomial Rings and Factorization		Smart	A First Course in
				of Polynomials: R is a UFD implies		Board	Abstract Algebra,
September				R[x] is a UFD. Divisibility in Integral Domains: Irreducibles.		PDF, Lapto	Fraleigh, Contemporary
September	16/09/2024	21/09/2024	4	Primes. Unique Factorization		p,	Abstract Algebra,
				Domains.		Latex	Gallian, Abstract
					Problem		Algebra, Dummit and
					Solving		Foote
				Divisibility in Integral Domains:		Smart	A First Course in
				Principal Ideal Domains. PID		Board	Abstract Algebra,
				implies UFD.		PDF, Lapto	Fraleigh, Contemporary
	23/09/2024	28/09/2024	4			p,	Abstract Algebra,
						Latex	Gallian, Abstract
					Problem		Algebra, Dummit and
					Solving		Foote

September October	30/09/2024	05/10/2024	3	Divisibility in Integral Domains: Euclidean Domains. Euclidian Domain implies PID	Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote
October	07/10/2024	12/10/2024	1	Divisibility in Integral Domains: Gaussian Integers and Fermat' s $p = a^{2+}b^{2}$ Theorem	Problem Solving	Smart Board PDF, Lapto p, Latex	A First Course in Abstract Algebra, Fraleigh, Contemporary Abstract Algebra, Gallian, Abstract Algebra, Dummit and Foote

* Assessment Rubrics

Compone	Max
nt	Marks
ISA 1	10
ISA 2	10
ISA 3	10
ISA 4	10
Semester	
End Exam	20