Lecture Plan									
Name of the College: Government College of Arts, Science and Commerce, Sanquelim-Goa									
Name of Faculty: Aaron Alphonso Subject: Galois Theory									
Paper code: N	MAT-610			Program: M.Sc.		Division	:-		
Academic yea	ar: 2024-25			Semester: III		Total Leo	:tures: 60		
Course Objec	Course Objectives: The student will learn the basic concepts in Field Extensions and Galois Theory								
Expected Cou Theory.	Expected Course Outcome: On completion of the course the student will be familiar with the topics in Field Extensions and Galois								
Student Learning Outcome: Student will be able to 1. Recollect and explain various concepts in Advanced Algebra 2. Prove important theorems in the course 3. Apply various concepts of Advanced Algebra to solve problems. 4. Correlate various concepts in Advanced Algebra and use them to solve problems.									
Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise/ Assignment	ICT Tools	Reference books		

	18/06/2024	22/06/2024	4	Extension of Fields: Field extensions, Field of rational functions	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
June	24/06/2024	29/06/2024	4	Extension of Fields: Simple extension, Algebraic extension, Transcendental extension, Construction by straight edge and compass, Constructible numbers.	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
	01/07/2024	06/07/2024	4	Tutorial Session	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
ylut	08/07/2024	13/07/2024	4	Automorphism group: Automorphisms of fields, Galois groups, Galois groups of finite fields, Galois group of Cyclotomic extensions. Galois group of a polynomial.	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
	15/07/2024	20/07/2024	4	Galois Theory: Symmetric rational functions, Galois group of field of rational function in n variable	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
	22/07/2024	27/07/2024	4	Galois Theory: Symmetric rational functions	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote

July August	29/07/2024	03/08/2024	4	Galois Theory: Galois group of field of rational function in n variable	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
	05/08/2024	10/08/2024	4	Galois Theory: Normal Extension	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
August	12/08/2024	17/08/2024	4	Galois Theory: Fundamental Theorem of Galois theory.	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
	19/08/2024	24/08/2024	4	Tutorial Session	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
	26/08/2024	31/08/2024	4	Finite Fields, Composite Extensions	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
	02/09/2024	07/09/2024	2	Simple Extensions, Cyclotomic Extensions	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
	09/09/2024	14/09/2024	2	Simple Extensions. Galois Group of Polynomials	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
September	16/09/2024	21/09/2024	4	Solvability: Solvable groups, Insolvability of A5	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
	23/09/2024	28/09/2024	4	Solvability: Solvability of polynomials, Insolvability of quintics	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote
September October	30/09/2024	05/10/2024	4	Solvability: Examples of insolvable	Exercises on topics covered	Latex, Smart Board	Abstract Algebra by David S. Dummit and Richard M. Foote

				quintics over Q			
October	07/10/2024	12/10/2024	2	Revision	Exercises on topics	Latex, Smart	Abstract Algebra by David S. Dummit and
					covered	Board	Richard M. Foote

* Assessment Rubrics

Compone	Max
nt	Marks
ISA 1	20
ISA 2	20
ISA 3	20
Semester	
End Exam	40