Lecture Plan							
Name of the College: Government College of Arts, Scienc	e and Commerce. Sanquelim - Goa						
Name of Faculty: ASHOK MAHADEV CHODANKAR Subject: CHEMISTRY							
Paper code: CHC 107	Program: BSc	Division: -					
Academic year: 2024 - 2025	Semester: V	Total Lectures: 30					
 Course Objectives: To study heterocyclic compounds and bicyclic heterocycles with examples. To learn classification with examples of oxygen, sulphur and nitrogen containing heterocycles (up to 6 membered). To understand structure, resonance, stability and reactivity of furan, pyrrole, thiophene, pyridine, indole, quinoline and isoquinoline and also learn about their industrial source and preparation methods. To study structure elucidation of Vitamin A, Vitamin C, Thyroxine and Adrenaline and also learn their synthesis from β-ionone, xylose, tyrosine and catechol respectively. To learn classification of dyes with one example and structure of each class. To understand reasons for colour of some molecules. To learn synthesis and understand chemistry of phenolphthalein, congo-red, crystal violet and methyl orange. 							
 PRACTICAL COURSE OBJECTIVES To understand theoretical concepts required for experiments and develop hands on experience with reference to basic laboratory techniques required for organic preparations, estimations and identification and separation of organic binary mixtures. To learn the interpretation of Infra-Red and proton NMR spectra by applying the concepts studied in theory. 							

Course Outcome:

Define and classify oxygen, sulphur and nitrogen containing heterocyclic compounds with examples.

• Explain structure, resonance, stability and reactivity of furan, pyrrole, thiophene, pyridine, indole, quinoline and isoquinoline and give their industrial source and preparation methods.

• Explain structure elucidation of vitamin a , vitamin c , thyroxine and adrenaline and also give their synthesis from β-ionone, xylose, tyrosine and catechol respectively.

• Classify dyes, giving one example and structure of each class.

• Explain reasons for colour of some molecules.

• Give synthesis and explain the chemistry of phenolphthalein, congo-red, crystal violet and methyl orange.

Practical

At the end of the course students will be able to

• Discuss the theory behind experiments.

• Understand stoichiometric requirements during organic preparations.

• Develop skills of common laboratory techniques including reflux, recrystallisation,

recording of melting point, distillation, titration and chemical analysis.

• Identify the separation technique for binary mixture separation and perform chemical nature analysis.

• Perform calculations for quantitative analysis.

• To interpret infra-red and proton NMR spectra of simple organic compounds.

Student Learning Outcome:

Course Outcome:

At the end of the course students will be able to

Define and classify oxygen, sulphur and nitrogen containing heterocyclic compounds

with examples.

• Explain structure, resonance, stability and reactivity of furan, pyrrole, thiophene,

pyridine, indole, quinoline and isoquinoline and give their industrial source and

preparation methods.

• Explain structure elucidation of vitamin a, vitamin c, thyroxine and adrenaline and also

give their synthesis from β -ionone, xylose, tyrosine and catechol respectively.

• Classify dyes, giving one example and structure of each class.

• Explain reasons for colour of some molecules.

• Give synthesis and explain the chemistry of phenolphthalein, congo-red, crystal violet and methyl orange.

Practical

At the end of the course students will be able to

• Discuss the theory behind experiments.

• Understand stoichiometric requirements during organic preparations.

• Develop skills of common laboratory techniques including reflux, recrystallisation,

recording of melting point, distillation, titration and chemical analysis.

• Identify the separation technique for binary mixture separation and perform chemical nature analysis.

• Perform calculations for quantitative analysis.

• To interpret infra-red and proton NMR spectra of simple organic compounds.

l							
Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise/ Assignment	ICT Tools	Reference books
01 AUGUST	10.45	11.45	01			SMART	1. I.L.Finar,
2024 TO 03						BOARD	Organic
AUGUST				Definition of heterocyclic			Chemistry
2024				compounds: Organic compounds			Vols I and
				containing oxygen,			II, Orient
				sulphur, nitrogen. Classification			Longman.
				with examples for three, four, five			2. Morrison
				and six membered heterocycles			and Boyd,
				Structure, resonance, stability and			Organic
	9.45	10.45	01	industrial source of furan, pyrrole,			Chemistry;
				thiophene and pyridine			6th Edn.
5 AUGUST				Organic Estimations			Prentice
TO 10	12.15	4.15	04	b) Acid + Ester			Hall India.

AUGUST				Organic Estimations		3. Francis
2024	12.15	4.15	04	b) Acid + Ester		Carey,
				Preparation of furan, pyrrole and		Organic
				thiophene using Paal Knorr		Chemistry,
				Synthesis. Reactivity of furan,		10th
	10.45	11.45	01	pyrrole and thiophene:		Edition.
				Electrophilic substitution at 2/5		4. Paula
	09.45	10.45	01	position.		Yurkanis
12 AUGUST	12.15	4.15	04	Organic Estimations		Bruice,
TO 17				a) Acid+ Amide		Organic
AUGUST						Chemistry;
2024	12.15	4.15	04	Organic Estimations		3rd Edn.
				a) Acid+ Amide		Pearson
	HOLIDAY					Education
	09.45	10.45	01	Reactivity of pyridine:		Asia.
				Electrophilic substitution at 3		
				position, Nucleophilic substitution		
				at 2 and 4 position.		
	12.15	4.15	04	c) Estimation of the number of		
				acetyl groups in an acetyl ester.		
				(Triacetyl glycerol,		
				Hexaacetyl mannitol or		
				Pentaacetyl glucose)		
	12.15	4.15	04	c) Estimation of the number of		
		_		acetyl groups in an acetyl ester.		
				(Triacetyl glycerol.		
				Hexaacetyl mannitol or		
				Pentaacetyl glucose)		
	10.45	11.45	01	Preparation of pyridine using		
				Hantzsch synthesis. Structure.		
				resonance, stability and		
19 AUGUST				industrial source of indole.		
TO 24				guinoline, isoguinoline		
AUGUST	09.45	10.45	01	Preparation of indole using Fischer	1 1	
2024				indole synthesis. Reactivity of		

						÷
				Indole: Electrophilic substitution		
				at 3 position.		
	12.15	4.15	04	Synthesis of dyes		
				b) Picric acid		
	12.15	4.15	04	Synthesis of dyes		
26 AUGUST				b) Picric acid		
TO 31	10.45	11.45	01	Skraup		
AUGUST				synthesis of quinoline and Bischler		
2024				Napieralski synthesis of		
				isoquinoline.		
	09.45	10.45	01	Reactivity of		
				quinoline and isoquinoline:		
				Electrophilic substitution at 5/8		
				position,		
	12.15	4.15	04	Synthesis of dyes		
				a) Diazoaminobenzene		
	12.15	4.15	04	Synthesis of dyes		
				a) Diazoaminobenzene		
	10.45	11.45	01	Nucleophilic		
2 SEPT TO 5				substitution at 2 and 4 position.		
SEPT 2024				Oxidation and Reduction of		
				quinoline and Isoquinoline.		
13 SEPT TO	09.45	10.45	01	Vitamins and Hormones		
14 SEPT				Structure elucidation of Vitamin A		
2024						
	12.15	4.15	04	Organic Preparations		
				Synthesis, yield, recrystallisation		
				and Melting Point.		
				v) Benzoin to benzilic acid		
16 SEPT TO	12.15	4.15	04	Organic Preparations		
21 SEPT				Synthesis, yield, recrystallisation		
2024				and Melting Point.		

				v) Benzoin to benzilic acid
	10.45	11.45	01	Vitamins and Hormones
				Structure elucidation of Vitamin C
	09.45	10.45	01	Vitamins and Hormones
				Structure elucidation of Thyroxine
	12.15	4.15	04	Organic Preparations
				Synthesis, yield, recrystallisation
				and Melting Point.
				Benzamide to m-nitrobenzoic acid
	12.15	4.15	04	Organic Preparations
				Synthesis, yield, recrystallisation
				and Melting Point.
				Benzamide to m-nitrobenzoic acid
	10.45	11.45	01	Vitamins and Hormones
				Structure elucidation of
				Adrenaline.
23 SEPT TO	09.45	10.45	01	Vitamins and Hormones, Synthesis
28 SEPT				:Vitamin A from β-ionone ,Vitamin
2024				C from xylose
	12.15	4.15	04	REPEATATION
	12.15	4.15	04	REPEATATION
	10.45	11.45	01	Vitamins and Hormones Synthesis
30 SEPT TO				:Adrenaline from Catechol and
5 OCT 2024				thyroxine from tyrosine.
	12.15	4.15	04	REPEATATION
	12.15	4.15	04	REPEATATION
	10.45	11.45	01	Dyes
				Classification of dyes: Acidic, basic,
				azo, reactive, with
				one example and structure of each
				class.
7 OCT TO	09.45	10.45	01	Dves
12 OCT	05.45	10.45	01	Classification of dyes. Vat
2024				mordant, direct, disperse with
	1	1	1	

				one example and structure of each class.	
	12.15	4.15	04	REPEATATION	
	12.15	4.15	04	REPEATATION	
	10.45	11.45	01	Dyes Reasons for colour of some molecules: Resonance effect in p-nitroaniline and nitrobenzene, conjugation effect in β-carotene and graphite.	
14 OCT TO 19 OCT 2024 21 OCT AND 22	09.45	10.45	01	Synthesis and chemistry of phenolphthalein, congo-red, crystal violet, methyl orange. REPEATATION	
OCT 2024					

	Component	Max Marks
	ISA 1	
Assessment		(10)
Rubrics	ISA 2	27/09/2024
		(50) AFTER
		SEMESTER
	Practical	END EXAM
	Project	
	Semester End	(80) FROM
	Exam	28/10/2024