Semester Lecture Plan

Name of the college: Government College of Arts, Science & Commerce, Sanquelim-Goa							
	· 1						
Name of Faculty: Dr. Dattaprasad D Narulkar	Subject: Chemistry						
Paper code: CHC-111 (Basic concept in Chemistry)	Program/Course: F.Y. B.Sc. (minor)	Division: -					
Academic year: 2024 - 2025	Semester: I	Total Lectures: 30 (Theory)					
Course Objectives: 1. To discuss different theories of periodic table and classification of elements and trends in periodic table.							
2. To explain different acid-bases theories							
3. To define the terms and state laws involved in thermodynamics							
Course Learning Outcomer							
 Student will be able to explain theories and trends in periodic table and the classification of elements. Student will be able to compare, distinguish and apply different acid-base theories. 							
3. Student will be able to define the terms and state laws involved in thermodynamics							

Month	Lectures From	Lectures To	No. of lectur es allott ed	Topic, Subtopic to be covered	Exercise/Ass ignment	ICT Tools	Referenc e books
July	1/07/2024	6/07/2024	02	Introduction to the Periodic Table Development of the periodic table- Dobereiner's Triads, Newland's Law of Octaves		Smart board	Ref 1 and 2
July	8/07/2024	13/07/2024	02	Newland's Law of Octaves, Modern periodic table		Smart board	Ref 1 and 2
July	15/07/2024	20/07/2024	02	Modern periodic table, (Theories and limitations of Mendeleev's periodic table and Modern periodic table).		Smart board	Ref 1 and 2
July	22/07/2024	27/07/2024	02	(Theories and limitations of Mendeleev's periodic table and Modern periodic table), Classification of the elements into s,p,d and f -block elements on the basis of electronic configuration (Continued)		Smart board	Ref 1 and 2
July- August	29/07/2024	03/08/2024	02	Classification of the elements into s,p,d and f -block elements on the basis of electronic configuration (Continued)		Smart boar	Ref 1 and 2
August	05/08/2024	10/08/2024	02	Trends in the periodic table (atomic and ionic size)	Assignment on periodic table	Smart board	Ref 1 and 2
August	12/08/2024	17/08/2024	02	Acid- Base Theories Arrhenius Concept, Bronsted Theory		Smart board	Ref 1 and 2

August	19/08/2024	24/08/2024	02	Bronsted Theory (continued), The Lux – Flood Solvent Systems		Smart board	Ref 1 and 2
August	26/08/2024	31/09/2024	02	Solvent System theory		Smart board	Ref 1 and 2
September	02/09/2024	05/09/2024	02	Lewis Concept of Acids and Bases. (Theories and limitations)	Examples of acids and bases and categorizatio n based on various theory	Smart board	Ref 1 and 2
September	06/09/2024	12/09/2024		Ganesh Chaturthi break		Smart board	Ref 1 and 2
September	13/09/2024	21/09/2024	02	Thermodynamics I: Definition of thermodynamic terms, system, surroundings etc. Types of thermodynamic systems and thermodynamic processes.			
September	23/09/2024	28/09/2024	02	Intensive and extensive properties.SmallConcept of heat and work, first law of thermodynamics,Small		Smart board	Ref 1 and 2
October	30/10/2024	05/10/2024	02	definition of internal energy and enthalpy. Heat capacity –heat capacities at constant volume and at constant pressure and their relationship,		Smart board	Ref 1 and 2

October	07/10/2024	12/10/2024	02	calculation of w, q, dU & dH for the expansion of ideal gases under isothermal and reversible conditions (Numerical problems)	Smart board	Ref 1 and 2
October	14/10/2024	19/10/2024	02	Solutions of liquids in liquids, Raoult's law and deviation from Raoult's Law	Smart board	Ref 1 and 2
October	21/10/2024	22/20/2024	01	Revision		

Reference Books:

1. J. D. Lee, *Concise Inorganic* Chemistry, 5th Edn. Wiley India. 2003.

- 2. P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller & F. A. Armstrong, *Shriver & Atkins' Inorganic Chemistry*, 5th Edn.; Oxford University Press. 2010.
- 3. F. A. Cottton, G. Wilkinson and P. L. Gaus, *Basic Inorganic Chemistry*. 3rd Edn. Wiley India. 2007.
- 4.. B. R. Puri, L. R. Sharma and K. C. Kalia, *Principles of Inorganic Chemistry*, 33rd Edn, Vishal Publishing Co. 2020.

* Assessment Rubrics

•

Component	Max Marks
ISA 1	10
ISA 2	10
ISA 3	10
Semester End Exam	80
Total	100

*Best two ISA will be considered