Name of Faculty: Mr. Deepak G Bandiwadikar Subject: Mathematics						
Paper code: MAT-211	Program: S.Y.B.Sc.	Division: -				
Academic year: 2024-25	Semester: III	Total Lectures: 45				
To introduce and familiarize the learner with the Diagonalisation and Quadratic forms Expected Course Outcome: 1) Display familiarity and knowledge of S	System of Equations, Matrices and matr					
To introduce and familiarize the learner with the Diagonalisation and Quadratic forms Expected Course Outcome: 1) Display familiarity and knowledge of S 2) Demonstrate proofs of Matrix Algebra	System of Equations, Matrices and matr					
To introduce and familiarize the learner with the Diagonalisation and Quadratic forms Expected Course Outcome: 1) Display familiarity and knowledge of S 2) Demonstrate proofs of Matrix Algebra 3) Choose the appropriate procedures a syllabus.	System of Equations, Matrices and matr a nd modify them, if needed to solve me	ix operations hod-based problems on the concepts in the				
To introduce and familiarize the learner with the Diagonalisation and Quadratic forms Expected Course Outcome: 1) Display familiarity and knowledge of S 2) Demonstrate proofs of Matrix Algebra 3) Choose the appropriate procedures a syllabus.	System of Equations, Matrices and matr a nd modify them, if needed to solve me	ix operations				
 To introduce and familiarize the learner with the Diagonalisation and Quadratic forms Expected Course Outcome: Display familiarity and knowledge of S Demonstrate proofs of Matrix Algebra Choose the appropriate procedures a syllabus. Analyze and solve unseen problems in 	System of Equations, Matrices and matr a nd modify them, if needed to solve me n Matrix Algebra and invent mathemati	ix operations hod-based problems on the concepts in the				
 2) Demonstrate proofs of Matrix Algebra 3) Choose the appropriate procedures a syllabus. 4) Analyze and solve unseen problems in Student Learning Outcome: Student will be able 1) Use matrices to represent and solve syst 	System of Equations, Matrices and matria a nd modify them, if needed to solve me n Matrix Algebra and invent mathemation to	ix operations hod-based problems on the concepts in the cally precise arguments to justify their solution				

Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise/ Assignment	ICT Tools	Reference books
	01/07/2024	06/07/2024	3	Vectors in R ⁿ : Operations with vectors in R ³ and generalization to R ⁿ	Problem solving	Chalk board	A textbook of matrices by Hari kishan
	08/07/2024	13/07/2024	3	Linear combinations; Linear dependence and independence;	Problem solving	Chalk board	A textbook of matrices by Hari kishan
July	15/07/2024	20/07/2024	3	Basis and Dimension.	Problem solving	Chalk board	A textbook of matrices by Hari kishan
	22/07/2024	27/07/2024	3	Elementary operations on a matrix: Types of matrices, Special matrices	Problem solving	Chalk board	A textbook of matrices by Hari kishan
July August	29/07/2024	03/08/2024	3	Symmetric, Skew - Symmetric matrices, Conjugate of a matrix, Hermitian matrix, Nilpotent and Idempotent matrices;	Problem solving	Chalk board	A textbook of matrices by Hari kishan
August	05/08/2024	10/08/2024	3	Result and properties on Symmetric, Skew - Symmetric matrices,Conjugate of a matrix, Hermitian matrix, Nilpotent and Idempotent matrices;	Problem solving	Chalk board	A textbook of matrices by Hari kishan

	12/08/2024	17/08/2024	2	Elementary matrices; Effects of multiplying by these on a matrix; Equivalence of matrices: Row/column equivalence;	Problem	Chalk board	A textbook of matrices by Hari kishan
	19/08/2024	24/08/2024	3	Echelon forms; Normal form.	Problem	Chalk board	A textbook of matrices by Hari kishan
	26/08/2024	31/08/2024	3	Rank of a matrix: Definition using minors; Finding rank of a matrix using definition (upto 3x3 only);	Problem solving	Chalk board	A textbook of matrices by Hari kishan
September	02/09/2024	07/09/2024	3	Theorem: Elementary operations do not change the rank of a matrix; Finding the rank using echelon forms;	Problem	Chalk board	A textbook of matrices by Hari kishan
	08/09/2024	13/09/2024		Linear Independence of Row and Column Matrices; Definition of rank of a matrix using independence of Row or column vectors;			
	16/09/2024	21/09/2024	3	Equivalence of two definitions of Rank and examples on above two topics	Problem solving	Chalk board	A textbook of matrices by Hari kishan
	23/09/2024	28/09/2024	3	Application of matrices: Existence of solutions of a system of linear equations using Rank method and their solution using Gauss Elimination	Problem solving	Chalk board	A textbook of matrices by Hari kishan
September October	30/09/2024	05/10/2024	3	Gauss Jacobi and Gauss Siedel method;	Problem solving	Chalk board	A textbook of matrices by Hari kishan

	07/10/2024	12/10/2024	3	Characteristic Values of a Matrix; Caley Hamilton Theorem; Diagonalisation of a matrix.	Problem solving	Chalk board	A textbook of matrices by Hari kishan
October	14/10/2024	19/10/2024	3	Quadratic Forms: Quadratic form as a matrix product;	Problem solving	Chalk board	A textbook of matrices by Hari kishan
	21/10/2024	23/10/2024	2	Diagonal reduction of a symmetric matrix; Reduction of quadratic form into sum of squares form.	Problem	Chalk board	A textbook of matrices by Hari kishan

* Assessment Rubrics

Com pone nt	Max Marks
ISA 1	7.5
ISA 2	7.5
Pract	
ical	25
SEE	60