	Lecture Plan						
Name of the	College: Goverr	ment College	of Arts, Scie	ence and Commerce, Sanquelim-Goa			
Name of Fac	u lty: Prajyot Ma	ruti Patil		Subject: Mathematics			
Paper code:	MTE 102, Combi	inatorics		Program: T.Y.B.Sc.		Division	:-
Academic ye	ar: 2024-25			Semester:		Total Le	ctures: 60
/ could inter ye							
Course Object 1. To pr		wledge of vario	ous concep	ts in combinatorics.			
	urse Outcome:						
	e generalised pi						
	/ binomial and n						
	problems on pa ordinary and exc						
4) 0320	4) Use ordinary and exponential generating functions to solve problems.						
1) Stude	Student Learning Outcome: Student will be able to Student will be able to prove pigeon hole principle, apply binomial and multinomial theorem and use ordinary and exponential generating functions to solve problems. 						
		·					
Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise / Assignm ent	ICT Tools	Reference books

June	28/06/2024	29/06/2024	1	Introduction to Combinatorics	Smart Board PDF	A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
July	01/07/2024	06/07/2024	4	generalized Pigeon-hole principle	Smart Board PDF	A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
	08/07/2024	13/07/2024	3	methods of mathematical induction – weak induction		A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
	15/07/2024	20/07/2024	4	methods of mathematical induction - strong induction, methods of mathematical induction – strong induction.	Data projec tor	A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
	22/07/2024	27/07/2024	4	Strings over finite alphabet, Choice problems. Permutations		A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona

July August	29/07/2024	03/08/2024	4	Choice problems		A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
August	05/08/2024	10/08/2024	3	Binomial theorem	Smart Board	A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
	12/08/2024	17/08/2024	4	Multinomial theorem		A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
	19/08/2024	24/08/2024	4	Compositions,	Smart Board PDF	A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
	26/08/2024	31/08/2024	3	Set partitions		A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona

September	02/09/2024	07/09/2024	2	Integer partitions	Smart Board	A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
	09/09/2024	14/09/2024	2	Cycles in permutations		A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
	16/09/2024	21/09/2024	4	Permutations with restricted cycle structure	Smart Board	A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
	23/09/2024	28/09/2024	4	Enumerating the elements of intersecting sets	Smart Board	A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
September October	30/09/2024	05/10/2024	4	applications of the sieve formula.		A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
October	07/10/2024	12/10/2024	4	Ordinary generating functions – Recurrence relations and generating		A Walk Through Combinatorics - An Introduction to

			functions Products of generating functions,	Enumeration and Graph Theory by Miklos Bona
14/10/2024	19/10/2024	4	Compositions of generating functions. Exponential generating functions – Recurrence relations and exponential generating functions,	A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona
21/10/2024	22/10/2024	2	Products of exponential generating functions, Compositions of exponential generating functions.	A Walk Through Combinatorics - An Introduction to Enumeration and Graph Theory by Miklos Bona

* Assessment Rubrics

Component	Max Marks
ISA 1	10
ISA 2	10
Practical	Nil
Project	Nil
Semester End	
Exam	80