				Lecture Plan			
Name of the Colleg	Name of the College: Government College of Arts, Science and Commerce. Sanquelim - Goa						
Name of Faculty: Vidhita Parab				Subject: Physics			
Paper code: PYD107			Program: T.Y.B.Sc Division:		Division:		
Academic year: 2024-25			Semester: V Total Lectu		Total Lectures	: 45	
Course Objective	s: To understand	solid state phys	ics and so	lve problems and apply o	concept to hig	gher level theo	retical physics
Course Outcome: 1. Define lattice translation vectors, basis, unit cell, determine miller indices and explain different crystal systems and bravais lattices 2. discuss free electron theory of metals and band theory of metals and extend this knowledge to understand different properties of solids. 3. classify solids on the basis of their band gap. 4. explain magnetic, dielectric and ferroelectric properties of materials. Student Learning Outcome: A To understand Quantum mechanics and solve problems and apply concept to higher level conceptual physics							
Month	Lecture From	Lecture To	No. of lecture s allotte d	Topic, Subtopic to be covered	Exercise/ Assignment	ICT Tools	Reference books
June- july	28-06-2024	06-07-2024	3	Amorphous Materials Crystalline Materials			1. Introduction to Solid State

				Lattice Translation Vectors	Physics, Charles Kittel,
	08-07-2024	13-07-2024		Basis	8th Edition,
				Unit Cell	2004, Wiley
				Miller Indices,	India Pvt. Ltd.
			3	Reciprocal Lattice	2. Solid State
	15-07-2024	20-07-2024		Types of Lattices	Physics, S.O.
				Brillouin zones	Graw Hill
			2	Diffraction of X-rays by	3. New
	22-07-2024	27-07-2024	5	Bragg ^w s Law	Course in
	22-07-2024	27-07-2024		Drude"s Free electron	Physics,
				model	Gogawale & Lele, Vol I
			3	Fermi Dirac distribution	Sheth
August	29-07-2024	03-08-2024		thermionic emission	Publishers
				Contact potential	
				Electrons in periodic	
			3	lattice	
	05-08-2024	10-08-2024		Kronig Penny Model	
				(Qualitative Approach)	
				Effective mass of	
			_	electron	
			3	Concept of hole	
				Classification of	
	12-08-2024	17-08-2024	1	hand structure	
	19-08-2024	24-08-2024		Effect of magnetic field	
				on electrons,	
				Hall effect	—
				Diamagnetic,	
			3	Paramagnetic	

	26-08-2024	31-08-2024		Ferrimagnetic and	
				Ferromagnetic	
				Materials	
				Classical Langevin	-
				Theory of diamagnetic	
				Classical Langevin	1. Introduction
				Theory of Paramagnetic	to Solid State
			3	Domains	Charles Kittel
	02-09-2024	05-09-2024		Quantum Mechanical	8th Edition
				Treatment of	2004. Wiley
				Paramagnetism. Curie"s	India Pvt. Ltd.
				law Discussion of B-H	2 Solid State
				Curve. Hysteresis and	Physics, S.O.
September				Energy Loss.	 Pillai, Mc-
				, Weiss"s Theory of	Graw Hill.
			2	Ferromagnetism	 3. New
	13-09-2024	14-09-2024		Ferromagnetic	Course in
			1	Domains.	 Physics,
	16-09-2024	21-09-2024		Discussion of B-H Curve.	Gogawale &
				Hysteresis and Energy	Lele, Vol. I.
				Loss.	Sheth
			3	polarization.	Publishers
	23-09-2024	28-09-2024		Local Electric Field at an	
				atom	-
				Depolarization Field.	
				Electric Susceptibility.	 _
				Polarizability. Clausius	
			3	Mosotti Equation	 _
	30-09-2024	05-10-2024		Classical Theory of	
				Electric Polarizability.	
				Langevin- Debye	
October			3	equation.	

				Complex Dielectric	
				Constant. Optical	
				Phenomena	
				Application: Plasma	
				Oscillations, Plasma	
				Frequency, Plasmons,	
				Tranverse optic modes	
	07-10-2024	12-10-2024		Structural phase	
				transition	
				Classification of crystals	
				Piezoelectric effect,	
			3	Pyroelectric effect,	
	14-10-2024	22-10-2024		Ferroelectric effect	
				Electrostrictive effect,	
				Curie-Weiss Law	
				Ferroelectric domains,	
			3	PE hysteresis loop	
	Component	May Marks			
Assassment		7.5	_		
Rubrics	154.2	75			
Rubrics	Practical	7.5	-		
	Project		_		
	Semester End		-		
	Fxam	60			
	Endin				

		Complex Dielectric Constant. Optical	1. Introduction
		Application: Plasma Oscillations, Plasma Frequency, Plasmons, Tranverse optic modes	to Solid State Physics, Charles Kittel, 8th Edition, 2004 Wiley
12-10-2024		Structural phase transition	India Pvt. Ltd.
		Classification of crystals	Physics, S.O.
	3	Piezoelectric effect, Pyroelectric effect,	Pillai, Mc- Graw Hill.
22-10-2024	-	Ferroelectric effect	3. New
		Electrostrictive effect, Curie-Weiss Law	Course in Physics,
	3	Ferroelectric domains, PE hysteresis loop	Gogawale & Lele, Vol. I. Sheth Publishers