Semester Lecture Plan

Name of the college: Government College of Arts, Science & Commerce, Sanquelim-Goa										
Name of Faculty: N	Mahendra R. Pednekar		Subject: Physics Core	e						
Paper code: PYC-	105		Program/Course: T.	Y. B.Sc.	Division:					
Academic year: 20	24 - 2025		Semester: V		Total Lectures:	: 60				
Course Objectives	:									
1. Understand the fa	ctors governing the motion of	of system of pa	articles with examples.							
2. Define central for	ce. Discuss the motion unde	r central force.								
3. Learn about mert	ial and non inertial frames of	reference. Stu	idy the laws of motion (on rotating earth and	various forces aris	ing.				
4. Understand the co	breept of rotational motion o	i rigia boaies.	officianay							
6 Discuss the vario	us methods of production of	low temperatu	res							
	us methods of production of	low temperatu	105.							
Course Learning (Jutcome: The students will	he able to								
1. Explain the	factors governing the motion	of system of r	particles.							
2. Discuss vari	ous aspects of central force v	with examples.								
3. Describe the	laws of motion on rotating e	earth and discu	ss forces arising.							
4. Understand	the concept of rotational mot	tion of rigid bo	dies.							
5. Calculate the	e efficiency of Otto and Dies	el engine.								
6. Elaborate on various methods of production of low temperature.										
Month	Lectures From: To:	No. of lectures allotted	Topic, Subtopic to be covered	Learning outcome	ICT Tools	Reference books				

June/July	28-06-24	6-07-24	04	Motion of a system of particles Center of mass coordinates, applications of conservation laws for linear momentum, angular momentum and energy - rockets,	The students will be able to: 1,Understand the concept of centre of mass coordinate 2. apply laws of conservation for angular and linear momentum	 Mechanics by K.R.Symon Introdction to classical mechanics by Takawale and puranic Heat Thermodynamics and statistical physics by Brijlal and Subramanyam Physics for t.y.B.Sc by sheth publishers
July	8-07-24	13-07-24	04	conveyor belts and planets, critique of conservation of laws. The collision problems, the two body problem, reduction to equivalent one body problem. Practical : Y by Koenig's method	The students will be able to: 1.Describe critique of conservation laws. 2. Develop two body problem and reduce to equivalent one body.	
July	15-07-24	20-07-24	04	Motion under a central force :General features of motion, qualitative discussions of orbits under inverse square law.force field.	The students will be able to: 1.State general features of motion. 2. define central force.	

				Nature of orbits, elliptical orbits, Practical : Optical Lever	3. Discuss inverse square force fied problems.	
July	22-07-24	27-07-24	04	Kepler's problem, hyperbolic orbits, classical scattering, definition of scattering cross section, Practical : Pt 100	The students will be able to: 1.State Kepler's laws . 2. Study classical scattering .	
July/August	29-07-24	3-08-24	04	impact parameter and scattering angle, Rutherford's scattering cross section. Moving coordinate systems Inertial and non- inertial coordinate frames, Practical: Practical : Quinkes' method to determine surface tension of mercury	The students will be able to: 1.Define impact parameter, Rutherford's scattering cross section. 2.Describe inertial and non-inertial frame of reference.	
August	5-08-24	10-08-24	04	rotating coordinate systems, laws of motion on the rotating earth, Coriolis force, Foucault's pendulum, and Larmor's theorem. Practical: repeatation Set I	The students will be able to: 1.Describe rotating co- ordinate system. 2.Discuss the laws of motion on rotating earth. 3. Learn about Foucault's pendulum.	

					4. State Larmor's	
					theorm.	
				Rigid bodies Rotation		
				about an axis,		
				moment of inertia	The students will	
				tensor, Euler's	be able to:	
				equations of motion	1. Discuss rotation	
				of a rigid body,	about an axis.	
				Practical: repetition	2. Derive Euler's	
				Set I	equations of	
					motion of a rigid	
August	12-08-24	17-08-24	04		body.	
				torque free motion,	The students will	
				qualitative discussion	be able to :	
				of motion of a	1.Understand the	
				symmetric	concept of torque	
				top.Thermal Physics:	free motion.	
				Power cycles. Internal	2. Qualitatively	
				Combustion Engines –	discuss the	
				The Otto cycle and its	motion of	
				efficiency,	symmetric top.	
				Practical: Katers	3.Explain the	
				pendulum	working of Otto	
					engine.	
					4.Calculate the	
August	19-08-24	24-08-24	04		efficiency.	
				Diesel cycle and its	The students will	
				efficiency.Production	be able to :	
				of low temperature.	1.Explain the	
				[13] Cooling by	working of Diesel	
				evaporation. Vapour	cycle, indicator	
				compression	diagram.	
				machines.	2.Compute the	
				Practical : Specific	efficiency.	
				heat of graphite.	3.Understand the	
					mechanism of	
August	26-08-24	31-08-24	04		vapour	

					compression machines.	
September	2-09-24	5-09-24	03	Refrigerators based on Vapour absorption. Cooling by sudden adiabatic expansion of compressed gases. Efficiency and performance of refrigerating machines. Enthalpy and heat flow. Joule Kelvin effect. Expression for Joule Kelvin coefficient and inversion temperature. Practical : Thermal conductivity of bad conductors by Lees method	The students will be able to : 1.Describe the principle of refrigerators based on Vapour absorption. 2. Understand principle of cooling by sudden adiabatic expansion of gases. 3. Explain joiule kelvin effect.	
September	13-09-24	21-09-24	06	Application to Van der Waals' gas. Principles of regenerative and cascade cooling. Liquifaction of hydrogen and helium. Production of temperatures below 4o K. Properties of He I and He II. Practical : Viscosity by stokes method	The students will be able to : 1.Apply joule kelvin effect to Van der Waal's gas. 2. Explain principles of regerative cascade cooling, liquefaction of hydrogen and helium.	

Santambar	23-09-24	28-09-23	04	Cooling by Adiabatic Demagnetisation of paramagnetic substances.Probabilit y Random Events, Probability, Probability and Frequency, Some basic rules of Probability theory, Continuous random variables, Practical : repetition set II	The students will be able to : 1.Explain cooling by adiabatic demagnetization of paramagnetic substances. 2. Define probability, random events 3. Differentiate between probability and frequency. 4.state some basic rules of probability.	
September/Octobe r	30-09-24	5-10-24	04	Mean value of discrete and continuous variables, Variance: Dispersion, Probability Distribution, Binomial distribution: Mean value and fluctuation, Stirling's Approximation, Poisson Distribution: Mean value and Standard deviation, Practical : repetition set II	The students will be able to: 1.Define mean valueof discrete and continous variable,variance ,dispersion. 2.Formulate Bionomial distribution. Calculate mean value and S.D. 3.Define fluctuations.	

					3.Derive Stirling's formula. 4.Formulate Poisson distribution. Calculate mean value and S.D.	
				Gaussian Distribution: Standard deviation. Statistical Distributions: Concept of Phase space, Probability of distribution and most probable distribution. Maxwell Boltzmann Statistics. Practical : Journal work	The students will be able to: 1.Derive expression for Gaussian distribution, calculate Standard deviation. 2. Explain the concept of phase space,probability of distribution and most probable distribution. 3. Discuss Maxwell Boltzmann	
October	14-10-24	22-10-24	04	Molecular speeds: mean, most probable and rms speeds. Experimental verification of Maxwell Boltzmann distribution law (Zartman ko experiment). Bose Einstein and Fermi Dirac statistics	statistics. The students will be able to: 1.Explain molecular speeds, mean,most probable and rms speeds. 2.Describe the experimental verification of MB distribution law	

		(qualitative study). Practical : Journal	3. Expalin Fermi Dirac and Bose	
		work	Eistein statistics.	