Semester Lecture Plan

Name of the college: Government College of Arts, Science & Commerce, Sanquelim-Goa

Name of Faculty: Aga D. A. Subject: Physics (THEORY) and (PRACTICALS)

Paper code:PYC- 106 Analog &Digital

Electronics Program/Course: T.Y. B.Sc. Division: A

Academic year: 2024 – 2025 Semester: V Total Lectures: 60 Plus Pract.

Course Objectives: This course aims to provide the students with a foundation in basic knowledge of Analogue and Digital Electronics.

Course Learning Outcome: The student after undergoing this course will be able to: 1. Describe and explain the basic function of a transistor, transistor as a Switch, Multivibrators using Transistors. 2) Explain FETs in detail 3) Design and Assemble the circuits of Voltage regulators using IC 78-- and 79—series. 4)Draw and Discuss the block diagram of IC555 and its use as Astable & Monostable multivibrator. 5) Illustrate the Number system logic and 6) Classify Flip Flops and Counters with diagram, truth table and waveforms.

Month	Lectures From: To:		No. of lectures allotted	Topic, Subtopic to be covered	Learning outcome	ICT Tools	Reference books
JUNE & JULY	28/06/2024	06/07/2024	05	Topic 1 Binary number system, Binary to Decimal and Decimal to Binary conversion	The student will be able to: 1. Describe and explain Binary number system, Binary to Decimal and	White board and marker	 Malvino and Leach, Digital Principles and Applications, TMH (1986). R. P. Jain, Modern Digital

					Decimal to Binary conversion, Preparation of 2 i/p, 3i/p and 4 i/p truth table		Electronics, TMH (2003).
JULY	08/07/2024	13/07/2024	04	Topic-1 Basic logic gates, NOT,OR, AND, gates	The student will be able to: . Describe and explain Basic logic gates, NOT,OR, AND, gates	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
JULY	15/07/2024	20/07/2024	04	Topic 1 NOR, NAND, and EX- OR, Bubbled OR and Bubbled AND gates	The student will be able to: 1) Describe and explain NOR, NAND, and EX- OR, Bubbled OR and Bubbled AND gates	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
JULY	22/07/2024	27/07/2024	04	PRACTICAL Topic1 De Morgan's Law's,	Verificatio n of De Morgan Laws and Boolean Identities. (Construction using Gates). The student will be able to: 1.	White board and marker	1. Malvi

				Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits,	Describe and explain De Morgan's Law's, Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits,		no and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).J. Millman and C. Halkias, Electronic Devices and Circuits , Mc Graw Hill (1972).
			04	PRACTICAL	NAND and NOR gates as universal building blocks.		
JULY & August	29/07/2024	03/08/2024	04	Topic 2 Sum of Products methods and Product of Sum methods of representation of logical functions.	The student will be able to: 1. Describe and explain Sum of Products methods and Product of Sum methods of representation of logical functions.	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
August	05/08/2024	10/08/2024	04	PRACTICAL Topic 2 Binary addition and Subtraction, Half adder and Full adder, Multiplexer and Demultiplexer. 4 Encoders and	REVISION The student will be able to: . Describe and explain Binary addition and Subtraction, Half adder and Full adder,	White board and marker	1.Allen Mottershed, Electronic Devices and Circuits An Introduction: PHI (1997). 2.Malvino, Electronic Principles, TMH (2007).

				decoders	Multiplexer and Demultiplexer. Encoders and decoders		J. Millman and C. Halkias, Electronic Devices and Circuits, Mc Graw Hill (1972).
			04	PRACTICAL	addition- Half adder and Full adder using logic gates.		
AUGUST	12/08/2024	17/08/2024	03	Logic families – DTL, TTL Standard TTL NAND gate,	The student will be able to: Explin Logic families – DTL, TTL Standard TTL NAND gate,	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
Tre desi	12,00,202	1770072021	04	PRACTICAL PRACTICAL	Digital MULTIPLEXER	W. W	(2000).
AUGUS T	19/08/2024	24/08/2024	04	Schottky TTL, ECL OR and NOR gate, MOS (inverter, NAND and NOR gates) and CMOS (inverter, NAND and NOR gates).,	The student will be able to: Explain Schottky TTL, ECL OR and NOR gate, MOS (inverter, NAND and NOR gates) and CMOS (inverter, NAND and NOR gates)	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
AUGUS T	26/08/2024	31/08/2024	04	PRACTICAL Transistors Multivibrators. Transistor as a switch,	The student will be able to: Explain Transistor as a	White board and marker	1. Malvino and Leach, Digital Principles and

				switching times, Multivibrators – Astable, Monostable,	switch, switching times, Multivibrators – Astable, Monostable,		Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
			04	PRACTICAL	Study and analysis of transistorised Multivibrators-Astable, Monostable.		
Septembe r	02/09/2024	05/09/2024	03	Topic Bistable and Schmitt Trigger. Field Effect Transistors. Basic structure of the JFET, Principles of operation, Characteristic curves and parameters	The student will be able to: Explain Bistable and Schmitt Trigger. Field Effect Transistors. Basic structure of the JFET, Principles of operation,	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
			04	PRACTICAL	Study and analysis of transistorised Multivibrators- Astable, Monostable.		2.
September	13/09/2024	21/09/2024	05	Topic-6 Common source amplifiers,	The student will be able to: Explain 3 bit Shift register (shift left, shift	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986).

				Common gate amplifier (only qualitative discussion), The MOSFET Depletion Mode and Enhancement mode,	right), Applications of FF's in counters, 3 bit count up/count down binary ripple counter,		2. R. P. Jain, Modern Digital Electronics, TMH (2003).
			04	PRACTICAL	Study and analysis of transistorised Multivibrators- Astable, Monostable.		
			UT	Dual-Gate MOSFET. FET Phase shift oscillator, FET as VVR and its applications in Attenuator, AGC and Voltmeter circuits. Applications of OP-AMP. Active diode circuits, Intergrator, Differentiator, Comparator, Window comparator, Schmitt Trigger, Waveform generator —	The student will be able to: Explain Dual-Gate MOSFET. FET Phase shift oscillator, FET as VVR and its applications in Attenuator, AGC and Voltmeter circuits. Applications of OP-AMP. Active diode circuits, Intergrator, Differentiator, Comparator, Window comparator, Schmitt Trigger,	White board	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH
September	22/09/2024	28/09/2024	04	Square wave,	Waveform	and marker	(2003).

1	1	I	I	lm: 1 1	1 4	I	1 1
				Triangular and	generator –		
				Ramp Generator	Square wave,		
				and monostable	Triangular and		
					Ramp Generator		
					and monostable		
					Study and		
					analysis of		
					transistorised		
					Multivibrators-		
					Bistable, Schmitt		
			04	PRACTICAL	trigger.		
					The student will		
				Voltage	be able to:		
				Regulation:	Explain Voltage		
				Fixed voltage	Regulation:		
				regulation using	Fixed voltage		
				IC-78 & 79	regulation using		
				series, adjustable	IC-78 & 79		
				voltage	series, adjustable		
				regulators using	voltage		
				IC LM-317.	regulators using		
				Timers: IC-555	IC LM-317.		
				Timers: 1e-333	Timers: IC-555		1. Malvino and
				concept, block	Timers: 10-333		Leach, Digital
				_			Principles and
				diagram,	concept, block		Applications, TMH
				Monostable,	diagram,		(1986).
				Astable and	Monostable,		, ,
				Voltage	Astable and		2. R. P. Jain,
				controlled	Voltage	*****	Modern Digital
September &	20/00/24	0.7/1.0/2.1		oscillator	controlled	White board	Electronics, TMH
October	30/09/24	05/10/24	04	(VCO).	oscillator (VCO).	and marker	(2003).
					Study and		
					analysis of		
					transistorised		
					Multivibrators-		
					Bistable, Schmitt		
			04	PRACTICAL	trigger.		

07/10/2024	12/10/2024	04	Flip Flops and Counters:- Basic RS FF, Clocked RS FF, JK FF, D-type and T- type FF, Master Slave Concept, PRACTICAL	The student will be able to: Explain Basic RS FF, Clocked RS FF, JK FF, D- type and T-type FF, Master Slave Concept, F.E.T Characteristics & F.E.T Common Source Amplifier.	White board and marker	H. S. Kalsi, Electronic Instrumentation: TMH (2004).
14/10/24	19/10/24	04	Topic-3 bit Shift register (shift left, shift right), Applications of FF's in counters, 3 bit count up/count down binary ripple counter,	The student will be able to: Explain 3 bit Shift register (shift left, shift right), Applications of FF's in counters, 3 bit count up/count down binary ripple counter,	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
		04	PRACTICAL Mod 3, Mod 5, Mod 7 Counters, BCD Decade Counter,	F.E.T Characteristics & F.E.T Common Source Amplifier The student will be able to: Explain Mod 3, Mod 5,	White board	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003)
		14/10/24 19/10/24	14/10/24 19/10/24 04	Counters: - Basic RS FF, Clocked RS FF, JK FF, D-type and T-type FF, Master Slave Concept, O4 PRACTICAL Topic-3 bit Shift register (shift left, shift right), Applications of FF's in counters, 3 bit count up/count down binary ripple counter, O4 PRACTICAL Mod 3, Mod 5, Mod 7 Counters, BCD Decade Counter,	Counters: Basic RS FF, Clocked RS FF, JK FF, D-type and T-type FF, Master Slave Concept, 12/10/2024 04 Slave Concept, O4 PRACTICAL Topic-3 bit Shift register (shift left, shift right), Applications of FF's in counters, 3 bit count up/count down binary ripple counter, 14/10/24 19/10/24 04 Teylor Decade Counter, O4 PRACTICAL Counters: Basic RS FF, Clocked RS FF, JK FF, D-type and T-type FF, Master Slave Concept, F.E.T Characteristics & F.E.T Common Source Amplifier. The student will be able to: Explain 3 bit Shift register (shift left, shift right), Applications of FF's in counters, 3 bit count up/count down binary ripple counter, F.E.T Characteristics & F.E.T Characteristics & F.E.T Common Source Amplifier Mod 3, Mod 5, Mod 7 Counters, BCD Decade Counter, The student will be able to: Explain Mod 3, Mod 5, M	Counters: - Basic RS FF, Clocked RS FF, Clocked RS FF, Clocked RS FF, Clocked RS FF, D-type and T-type FF, Master Slave Concept, 12/10/2024 04 04 Slave Concept, PRACTICAL PRACTICAL Topic-3 bit Shift register (shift left, shift right), Applications of FF's in counters, 3 bit count up/count down binary ripple binary ripple tounter, 14/10/24 19/10/24 04 counter, Odd PRACTICAL Mod 3, Mod 5, Mod 7 Counters, BCD Decade Counter, Mod 3, Mod 5, Mod 7 Counters, BCD Decade Counter, Mod 3, Mod 5, Mod 5, Mod 7 Counters, BCD Decade Counter, Mod 3, Mod 5, Mod 3, Mod 5, White board White board will be able to: Explain Counter, Source Amplifier The student will be and Explain Counter, Source Amplifier The student will be able to: Explain Counter, Source Amplifier White board and marker The student will be able to: Explain Counter, Source Amplifier White board white board will be able to: Explain Counter, Source Amplifier

			04	PRACTICAL	Op-Amp as a square wave generator & integrator		
							1. Malvino and
				BCD Decade	The student will		Leach, Digital
				Counter,	be able to: Explain		Principles and
				Cascade BCD	BCD Decade		Applications, TMH
				Decade	Counter, Cascade		(1986).
				counters,	BCD Decade		2. R. P. Jain,
				Principle of	counters, Principle	White board	Modern Digital
October	21/10/24	22/10/24		digital clock.	of digital clock.	and marker	Electronics, TMH

^{*}Note: Data filled in the above form is sample data.