	Lecture Plan					
Name of the college: Government College of Arts , Science & Commerce, Sanquelim, Goa.						
Name of Faculty: Prajyot Maruti Patil	Subject: Differential Equations II					
Paper code: MTC-108	Program: T.Y.B.Sc.	Division:				
Academic year: 2024-25	Semester: VI	Total Lectures: 90				
 To study Power series methods to solve Differential Eq To Learn Numerical Methods for Differential Equations 						
 Expected Course Outcome: 1. Knowledge acquired: Students will have knowledge of n transform and Numerical methods. 2. Competency developed: Students will be able to apply with a student students will be able to analyse and solve distribution. 3. Skill gained: Students will be able to analyse and solve distribution. 4. Students will be able to correlate the various concepts in the students. 	arious concepts to solve problems. ifferent types of differential equations.					
Student Learning Outcome:						
1. Students will be able to analyse and solve different type	s of differential equations.					

Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise/ Assignme nt	ICT Tools	Reference books
December	Week 1 04/12/24	07/12/24	0	Nil			
December	Week 2 09/12/24	14/12/24	06	Introduction to Differential Equations	Able to identify order ,degree, etc of a D.E		Introduction to Ordinary Differential Equation by Earl A. Coddington
December	Week 3 16/12/24	21/12/24	06	Linear first order differential equations, Riccatic's DE, second order linear DE, Non homogenous DE, Wronskian.	Able to solve first order D.E, Riccatic's DE, second order linear DE		Introduction to Ordinary Differential Equation by Earl A. Coddington
January	Week 4 02/01/25	04/01/25	06 Liberation Day	Power series method to solve DE: DE with analytic coefficints, Chebyshev DE, Legendre DE, Legendre polynomial.	Able to solve D.E with variable coefficien ts		Introduction to Ordinary Differential Equation by Earl A. Coddington
January	Week 5		06	Properties of Legendre Polynomials, Linear DE with	Able to solve D.E		Introduction to Ordinary Differential

	06/01/25	11/01/25		regular singular point, Frobenius method, exceptional cases, Bessel equation of zero order.	with regular singular points	Equation by Earl A. Coddington
January	Week 6 13/01/25	18/01/25	06	Bessel function of order alpha, properties of Bessel functions		Introduction to Ordinary Differential Equation by Earl A. Coddington
January	Week 7 20/01/25	25/01/25	06	Properties of Bessel functions		Introduction to Ordinary Differential Equation by Earl A. Coddington
January-February	Week 8 27/01/25	01/02/25	06	Properties of Bessel functions		Introduction to Ordinary Differential Equation by Earl A. Coddington
February	Week 9 03/02/25	08/02/25	06	Properties of Bessel functions		Introduction to Ordinary Differential Equation by Earl A. Coddington
February	Week 10 10/02/25	15/02/25	06	Convergence proof		Introduction to Ordinary Differential Equation by Earl A. Coddington
February	Week 11 17/02/25	22/02/25	06	Generating functions, regular singular point at infinity		Introduction to Ordinary Differential Equation by Earl A. Coddington

February-March	Week 12 24/02/25	01/03/25	06	Laplace Transform	Able to solve DE by using this method		Introduction to Ordinary Differential Equation by Earl A. Coddington
March	Week 13 03/03/25	08/03/25	06	Laplace Transform			Introduction to Ordinary Differential Equation by Earl A. Coddington
March	Week 14 10/03/25	15/03/25	06 Holi	Laplace Transform			Introduction to Ordinary Differential Equation by Earl A. Coddington
March	Week 15 17/03/25	22/03/25	06	Numerical methods: Picards method, Euler method		Google Classroom	Introduction to Ordinary Differential Equation by Earl A. Coddington
March	Week 16 24/03/25	29/03/25	06	modified Euler method ,Runge kutta method of second and fourth order		Google Classroom	Introduction to Ordinary Differential Equation by Earl A. Coddington
March-April	Week 17 31/03/25	05/04/25	06 Gudi Padva, Id	Predictor corrector method ,Adams-Moultan method		Google Classroom	Introduction to Ordinary Differential Equation by Earl A. Coddington
April	Week 18 07/04/25	11/04/25	04	Question Paper Discussion			

* Assessment Rubrics

Component	Max Marks
ISA 1	15
ISA 2	15
Practical	Nil
Project	Nil
Semester End	
Exam	120