Practical Plan

Name of the college: Govt. College of Arts, Science and Com. Sanquelim, Goa

Name of Faculty: Varsha Sail Subject: Chemistry

Paper code:CHC-109, Inorganic Chemistry Program: T.Y. BSc Division: A

Academic year: 2024 - 2025 Semester: VI Total Practicals/Labs: 10

Credits:02

Course Objectives: Principle and techniques of different volumetric

estimation

Expected Course Outcome: Student should be able to carry out volumetric estimation, theory and do the calculations involved in the estimation

Student Learning Outcome: Student are introduced to different types of volumetric estimation. They understand the theory involved in the estimation. And are trained to use the apparatus correctly to get accurate result and also do the calculation involved.

Month	Practicals/Labs Scheduled Date	No. of Practical s/Labs planned	List of Experiments	Reference books
December	9th	4hr	Batch -I Preparation of Tetraaminecopper(II) sulphate complex and Preparation of Trisethylenediaminenickel(II) chloride complex	G.H. Jeffery, J. Bassett, J. Mendham, R. C. Denney, Vogel's Textbook of Quantitative Chemical Analysis, 5 th Edn.
	10 th 16th	4 Hr 4 Hr	Batch II-Tetraaminecopper(II) sulphate complex and Preparation of Trisethylenediaminenickel(II) chloride complex Batch -I Estimate the amount of Ni by EDTA	ELBS Reference books:
January 2025	17 th	4 Hr 4 Hr 4 Hr	Batch II Estimate the amount of Ni by EDTA Batch -I Estimate the amount of copper from Tetraaminecopper(II) sulphate complex by iodometry. Batch II Estimate the amount of copper from	1. J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Vogel's Textbook of Quantitative
	7 th	4 Hr	Tetraaminecopper(II) sulphate complex by iodometry Batch -I. Estimate volumetrically the amount of cobalt in CoCl ₂ . H ₂ O by EDTA method using	Chemical Analysis, 6 th Edn. Pearson 2. S. Ratan, Experiments in Applied Chemistry, 3 rd Edn. S.K. Kataria & Sons
	14 th	4 Hr	hexamine indicator. Batch II Estimate volumetrically the amount of cobalt in CoCl ₂ . H ₂ O by EDTA method using hexamine indicator. Batch -I To estimate aluminium by back titration	3. O. P. Pandey, D. N. Bajpai and S. Giri, Practical Chemistry, Revised Edn. S.
	20 th	4 Hr	using zinc sulphate Batch -II. To estimate aluminium by back titration using zinc sulphate.	Chand.

		4 Hr	Batch -I Determine the strength in grams per litre
			of a given AgNO ₃ solution being provided N/30
			NaCl solution by Mohr's Method.
	27 st		
		4 Hr	Batch -II Determine the strength in grams per
	28 th		litre of a given AgNO ₃ solution being provided N/30 NaCl solution by Mohr's Method.
			Batch -I Estimation of Fe(III) by dichromate
February			method in the given solution of ferric alum
2025	3 rd		by using SnCl ₂ .
		4 Hr	Batch -II Estimation of Fe(III) by dichromate
			method in the given solution of ferric alum
	4th		by using SnCl ₂ .
		4 Hr	atch -I To estimate amount of ferrous(Fe ²⁺) and
			ferric(Fe ³⁺) ions in the given solution containing
			ferric chloride and ferrous sulphate by using
	10 th		potassium dichromate.
		4 Hr	Batch -II To estimate amount of ferrous(Fe ²⁺) and
			ferric(Fe ³⁺) ions in the given solution containing
			ferric chloride and ferrous sulphate by using
	11 th		potassium dichromate.
		4 Hr	Batch -I To estimate amount of ferrous(Fe ²⁺) and
			ferric(Fe ³⁺) ions in the given solution containing
			ferric chloride and ferrous sulphate by using
			potassium dichromate.
	17 th		

		4 Hr	Batch -II To estimate amount of ferrous(Fe ²⁺) and ferric(Fe ³⁺) ions in the given solution containing ferric chloride and ferrous sulphate
	18 th		by using potassium dichromate.
		4 Hr	Batch -I Volumetric estimation of Nitrite in
			the given solution of sodium nitrite using
	24 th		KMnO ₄
		4 Hr	Batch -II Volumetric estimation of Nitrite in
			the given solution of sodium nitrite using
	25 th		KMnO ₄
		4 Hr	Batch -I Determination of alkalinity of a given
			mixture of OH ⁻ . and CO ₃ ⁻² using phenolphthalein
March 2025	3 rd		and methyl orange indicator
		4 Hr	Batch -II Determination of alkalinity of a given
			mixture of OH ⁻ . and CO ₃ ⁻² using
	4 th		phenolphthalein and methyl orange indicator
	4	4 Hr	Batch -I. Estimation of manganese in presence of
			iron in ferromanganese by EDTA titration.
	10 th	4 Hr	Batch -II. Estimation of manganese in presence
		4 m	of iron in ferromanganese by EDTA titration.
	11 th		of non in terromanganese by EDTA unation.

	17 th	4 Hr	Batch –I Repetitions	
	18 th	4 Hr	Batch –II-repetition	
	24 th	4 Hr	Batch –I Journal certification	
	25 th	4 Hr	Batch –II- journal certification	
	31 st	4 Hr	Batch –I- exam	
April 2025	1 st	4 Hr	Batch –II Exams	
	7 th	4 Hr	Batch –I Exams	
	8 th	4 Hr	Batch –II Exams	