Practical Plan

Name of the college: Government College of Art	ts, Science & Commerce, Sanquelim, Goa
	·

Name of Faculty: Mr. Sujay S.Sawant Subject: Physical Chemistry I

Paper code: CHC-204 Program: S.Y.BSc. Division:

Academic year: 2024 - 2025 Semester: IV Total Practical/Labs: 08 (30 Hours)

Credits: 1

Course Objectives:

- To acquire knowledge on the various types of reactions and their order.
- To understand the thermodynamic parameters used in laboratory techniques.
- To study complex formation and determination of stability constant colorimetrically.

Expected Course Outcome:

At the end of the course students will be able to:

- CO1: Calculate and explain various thermodynamic parameters of chemical reactions.
- CO2: Differentiate between different nuclear counters.
- CO3 : Estimate quantum yields of photochemical reactions.
- CO4 : Compare the strength of the acids.
- CO5: Determine graphically order of reaction and estimate the energy of activation.
- CO6: Estimate the stability constant of various complexes.

Student Learning Outcome:

At the end of the course students will be able to:

- 1. calculate and articulate key thermodynamic parameters associated with chemical reactions.
- 2. distinguish among various types of nuclear counters and understand their operational differences.
- 3. estimate quantum yields in photochemical reactions and understand their significance.
- 4. evaluate and compare the relative strengths of acids based on scientific principles.
- 5. analyze reaction kinetics, graphically determine the order of reactions, and estimate activation energies.
- 6. calculate and interpret stability constants for various chemical complexes.

Month	Practical/Labs Scheduled Date	No. of Practical /Labs planned	List of Experiments	Reference books
December	09/12/24	1 (Batch III)	Determination of energy of activation for ethyl acetate and NaOH using equal concentration.	[1-5]
	16/12/24	1 (Batch III)	1. Determination of energy of activation for ethyl acetate and NaOH using equal concentration.	[1-5]
January	06/01/25	1 (Batch III)	2. Compare the strengths of HCl and H2SO4 by studying kinetics of hydrolysis of methyl acetate.	[1-5]
	13/01/25	1 (Batch III)	2. Compare the strengths of HCl and H2SO4 by studying kinetics of hydrolysis of methyl acetate.	[1-5]
	20/01/25	1 (Batch III)	3. To determine the rate constant and order of reaction between KI and K2S2O8	[1-5]
	27/01/25	1 (Batch III)	3. To determine the rate constant and order of reaction between KI and K2S2O8	[1-5]
February	03/02/25	1 (Batch III)	4. Determination of enthalpy of ionization of Acetic acid and NaOH.	[1-5]
	10/02/25	1 (Batch III)	4. Determination of enthalpy of ionization of Acetic acid and NaOH.	[1-5]
	17/02/25	1 (Batch III)	5. Determination of enthalpy of neutralization of Acetic acid and NaOH.	[1-5]

Г

	24/02/25	1 (Batch III)	5. Determination of enthalpy of neutralization of Acetic acid and NaOH.	[1-5]
March	03/03/25	1 (Batch III)	6. To study complex formation between Ni(II) and Ophenanthroline by Job's method. (Colorimetry)	[1-5]
	10/03/25	1 (Batch III)	7. To study the complex formation between Fe(III) ions and Salicylic acid and to find the formula and stability constant of the complex using colorimetry.	[1-5]
	17/03/25	1 (Batch III)	7. To study the complex formation between Fe(III) ions and Salicylic acid and to find the formula and stability constant of the complex using colorimetry.	[1-5]
	24/03/25	1 (Batch III)	8. To measure the Combustion Enthalpies of Coal via Bomb Calorimetry.	[6]
	31/03/25	1 (Batch III)	Repeat practicals	-
April	07/04/25	1 (Batch III)	Semester End Practical Examination	-

References:

- 1. S. W. Rajbhoj and T. K. Chondhekar, Systematic Experimental Physical Chemistry, Anjali Publication, 2nd Edition, 2000, Aurangabad.
- 2. Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18 th edition.
- 3. O. P. Pandey, D. N. Bajpai, S. Giri, Practical Chemistry, S. Chand Publication, 2013, New Delhi, Revised Edition.
- 4. B. Viswanathan, P. S. Raghavan, Practical Physical Chemistry, Viva Books Private limited, 2012, Mumbai.

- 5. J. N. Gurtu and A. Gurtu, Advanced Physical Chemistry Experiments, Pragati Prakashan, 2008, Meerut, Revised Edition.
- 6. A. M. Ranjika and P. Bopegedera, Evaluating the heats of combustion of coals using Bomb calorimetry in the general chemistry laboratory, J. Chem. Educ. 2023, 100, 1, 298 305

* Assessment Rubrics			
Component	Max Marks		
ISA	15		
Semester End Exam	60		
Practical	25		
Total	100		