Name of the college: Government College of Arts, S	Science and Commerce, Sanquelim - Goa				
Name of Faculty: Mr. Vishal Vinayak Gawas	Name of Faculty: Mr. Vishal Vinayak Gawas Subject: Functional Analysis				
Paper code: MAT 507	Program: MSc	Division:			
	-				
Academic year: 2024 - 2025	Semester: II	Total Lectures: 60			
Course Objectives: Starting with the basics this course will cover the foundations of Functional Analysis such as normed spaces, inner product spaces, Banach spaces, Hilbert spaces, bounded linear operators and bounded functional, and the four fundamental theorems: Hahn-Banach Theorem, Uniform Boundedness Principle, Open Mapping Theorem and Closed Graph Theorem. Expected Course Outcome: 1. Un derstand the basic concepts and fundamental theorems of Functional Analysis 2. Appreciate Functional Analysis as an important field for application oriented Mathematics.					
 Student Learning Outcome: On completion of the course the student will have Understanding of the basic concepts and fundamental theorems of Functional Analysis Appreciation of Functional Analysis as an important field for application oriented Mathematics. Ability to relate and apply the concepts learnt in the course to problems. 					

• Foundation for higher courses in Functional analysis, Operator Theory, PDE etc.							
Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise/ Assignment	ICT Tools	Reference books
Decembe r	Week 1 04/12/24	07/12/24	04	Definition of the standard sequence spaces: s, c, c_0 , c_{00} , l^p , standard function spaces C[a,b] and $B[a,b]$			Introductory Functional Analysis with Applications, Ervin Kreyszig,
Decembe r	Week 2 09/12/24	14/12/24	04	Completeness properties of these standard spaces			
Decembe r	Week 3 16/12/24	21/12/24	04 Liberation Day	Separability properties of these standard spaces			
January	Week 4 02/01/25	04/01/25	04	Normed spaces- Properties and Banach spaces, Standard normed spaces –Sequence spaces, Function spaces and subspaces			Introductory Functional Analysis with Applications, Ervin Kreyszig,

January	Week 5 06/01/25	11/01/25	04	Finite dimensional normed spaces and subspaces, Equivalence of norms, Compactness, and finite dimension,		
January	Week 6 13/01/25	18/01/25	04	Linear Operators Boundedness and Continuity. Linear functional. Normed spaces of Operators		
January	Week 7 20/01/25	25/01/25	04	Dual space-Algebraic and Topological duals. Inner Product Spaces- Properties		
January- February	Week 8 27/01/25	01/02/25	04	Hilbert spaces, Orthogonal Complement and Direct Sums		Introductory Functional Analysis with Applications, Ervin Kreyszig,
February	Week 9 03/02/25	08/02/25	04	Orthonormal Sets and Sequences Total Orthonormal Sets and Sequences		

February			04	Representation of		
	Week 10	15/02/25		Functional on Hilbert		
	10/02/25			Spaces, Hilbert -Adjoint		
	10/02/25			Operator, Self		
				Adjoint, Unitary and Normal		
				Operators		
February			04	Hahn-Banach Theorem		
	Week 11	22/02/25		(Statements and idea of proof		
		, ~_,		for the case of vector spaces,		
	17/02/25			normed spaces).		
				Applications to Existence of		
				Functionals		
February	Week 12		04			
-March	24/02/25	01/03/25				
March			04	Adjoint Operators		Introductory
iviaren						Functional
	Week 13	08/03/25				Analysis with
				Reflexivity of Spaces, Baire		Applications,
	03/03/25			(Statement only) Uniform		Ervin
				Boundedness Theorem		Kreyszig
March	Week 14		04	Open Mapping Theorem,		
	10/03/25	15/03/25	Holi	Closed Graph Theorem.		

March	Week 15		04			
	17/03/25	22/03/25		Revision		
March	Week 16		04			
	24/03/25	29/03/25		Revision		
March-	Week 17		04			

* Assessment Rubrics

Component	Max Marks
ISA 1	20
ISA 2	20
ISA 3	20
Practical	-
Project	-
Semester	
End Exam	40