	Lecture Plan						
Name of the college: Government College of A	Name of the college: Government College of Arts, Science and Commerce, Sanquelim – Goa.						
Name of Faculty: Ms. Anushka Panjikar	Subject: Physics						
Paper code: PYD106 Nuclear Physics	Program: TY BSc	Division: -					
Academic year: 2024- 2025	Semester: VI	Total Lectures: 60					
Course Objectives: This course aims at providing students with a comprehensive understanding of nuclear properties, forces, decay processes, nuclear models, and energy applications, while equipping them with problem-solving skills and knowledge of radiation detection techniques.							
Expected Course Outcome: ON COMPLETION OF THIS COURSE THE LEARNER WILL BE ABLE TO : 1. Explain different properties of nucleus and nuclear forces. 2. Distinguish between different types of radioactive decays and deduce energetics of different nuclear reactions. 3. Describe different nuclear models, discuss working of nuclear reactor, breedor reactor and advantages of nuclear energy. 4. List different methods of detecting nuclear radiation and explain.							
Student Learning Outcome: Upon successful decay processes, apply nuclear models to pre- the applications of nuclear energy and radiat	completion of this course, students will be able dict stability, solve problems related to radioac ion detection techniques.	to analyze nuclear properties, forces, and tivity and nuclear reactions, and evaluate					

Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise/ Assignmen t	ICT Tools	Reference books
December	16-12-24	21-12-24	4	Introduction to Nuclear Physics	Group discussion	Powerpoint presentation	Irving Kaplan, Nuclear Physics,
				•			Narosa Publishing
						Google classroom	House
							S.B. Patel, Nuclear Physics, TMH
December	23/12/24	31/12/24	0	Christmas vacation			
January	02/01/25	04/01/25	3	1. Nuclear Properties :	MCO Ouiz	Powerpoint	Irving Kaplan,
		01/01/20		Constituents of nucleus, Isotope,		presentation	Nuclear Physics, Narosa Publishing
	1			Isotone & Isobar		Google classroom	House

				 Radii & Density of nucleus, Definition of a.m.u, Mass of nuclei, Mass defect, Packing fraction, Binding energy Binding energy, Stability of nuclei 			S.B. Patel, Nuclear Physics, TMH
January	06/01/25	11/01/25	4	 Magnetic dipole moments. Electrical quadrupole moment. Nuclear forces : Main characteristics of nuclear forces; Deuteron problem 	MCQ Quiz	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH
January	13/01/25	18/01/25	4	 Meson theory of nuclear forces, estimation of mass of meson using Heisenberg's uncertainty Principle. Yukawa potential Radioactivity : Law of 	MCQ Quiz	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH

				radioactive decay; half & mean life 4. Problem solving			
January	20/01/25	25/01/25	4	 ISA 1 Assignmnt Problem solving Revision Statistical nature of radioactive phenomenon, Successive radioactive transformation (A→B→C type) 	Powerpoint presentation	Powerpoint presentation	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH
January	27/01/25	31/01/25	3	 Ideal, transient and secular equilibrium Radioactive series Radioactive-carbon dating, Applications, Problems 	MCQ Quiz	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH
February	01/02/25	08/02/25	5	 Nuclear Reactions : Artificial transmutation, Definition, Compound nucleus, 	MCQ Quiz	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH

				 Types of nuclear reactions Conservation laws, Energetics of nuclear reactions, Q value Threshold energy of endoergic reactions cross sections of nuclear reactions 			
February	10/02/25	15/02/25	4	 Discovery of neutron, Determination of neutron mass Problem solving Doubt clearing session Radioactive Decay Alpha decay: Velocity and energy of alpha particles; Alpha disintegration energy 	MCQ Quiz	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH
February	17/02/25	22/02/25	4	 Geiger-Nuttal law, alpha spectra and fine structure Short range and long range alpha particles; Gamow theory of 	MCQ Quiz	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH

				 alpha decay (qualitative treatment) 3. Beta decay: Types of beta decay 4. Energies of beta decay; the continuous beta particle spectrum 			
February	24/02/25	28/02/25	3	 Difficulties in understanding the spectrum; Pauli's neutrino hypothesis Fermi's theory of beta decay (qualitative treatment) Gamma decay: Origin of the decay; internal conversion and nuclear isomerism 	MCQ Quiz	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH
March	01/03/25	08/03/25	5	 Problem solving Nuclear Models : Liquid drop model Wiezsacker's semi empirical mass formula; mass parabolas; prediction of stability spontaneous and induced fission; Bohr- Wheeler theory of nuclear fission and 	MCQ Quiz	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH

				 condition for spontaneous fission on the basis of Z/A 5. Estimation of energy released from binding energy curve and from energy – mass equivalence. 		
March	10/03/25	15/03/25	3	 Nuclear Shell Model Magic numbers; main assumptions of the single particle shell model; Jensen-Mayer scheme (no derivation) Predictions of the shell model- Spin and Parity 	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH
March	17/03/25	22/03/25	4	 Nuclear energy: Neutron induced fission; chain reaction; mass yield in an asymmetrical fission ISA 2 Written test Neutron cycle in a thermal nuclear reactor (the four factor formula) Structure of nuclear reactor and it's 	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH

				working; principle of a breeder reactor Nuclear Program in India- Nuclear Energy , Nuclear test (Pokhran- I & II), Nuclear submarine			
March	24/03/25	31/03/25	4	 Detection of nuclear radiation: Ionization chamber proportional chamber; Geiger Muller counter Photographic emulsions; Semiconductor detectors Summary, discussion 	MCQ Quiz	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH
April	01/04/25	05/04/25	4	 Problem solving Revision Revision Revision 	Written Test	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House S.B. Patel, Nuclear Physics, TMH
April	07/04/25	11/04/25	3	 Revision Revision Revision 	Discussion	Powerpoint presentation Google classroom	Irving Kaplan, Nuclear Physics, Narosa Publishing House

			S.B. Patel, Nuclear Physics, TMH

*Assessment Rubrics

Component	Max Marks
ISA 1 Assignment	10
ISA 2 Written Test	10
Semester End	
Exam	80