Practical Plan

Name of the college: Government college of Arts Science and commerce Sanquelim Goa.

Name of Faculty: Ms. Dipika Gosavi

Subject: Chemistry

Paper code: CHC-302 Program: T.Y.B.Sc Division: A

Academic year: 2025- 2026 Semester: I Total Practicals/Labs: 10 (30 hours)

Credits: 1

Course Objectives:- To develop fundamental laboratory skills for determining solution properties, standardizing solutions, purifying compounds, and performing qualitative analysis with safe and accurate practices.

Expected Course Outcome:

- 1. To introduce the fundamentals of electrochemistry.
- 2. To understand and apply the concepts of quantum mechanics.
- 3. To learn the principles of vibrational and rotational spectroscopy

Student Learning Outcome:

students will be able to:

- 1. differentiate between the types of cells used in electrochemistry.
- 2. use quantum operators for solving numericals.
- 3. identify and predict structure of molecules using vibrational and rotational spectra.
- 4. perform conductometric and potentiometric measurements.
- 5. measure standard oxidation potentials of various metal/metal ion electrodes.
- 6. calculate internuclear distance of molecules from vibrational-rotational spectra.

Month	Practicals/Labs Scheduled Date	No. of Practical's/Labs planned	List of Experiments	Reference books
June	23/06/2025-28/06/2025		Practicals not started	
June/July	30/06/2025-05/07/2025	1	To determine the cell constant using 0.1N and 0.02N KCl solution.	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
July	07/07/2025-12/07/2025	1	2. To verify Ostwald's dilution law using acetic acid.	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
July	14/07/2025-19/07/2025	1	2. To verify Ostwald's dilution law using acetic acid.	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
July	21/07/2025-26/07/2025	1	3. To determine the percentage composition of acid mixture (strong acid and weak acid) by titrating against standard 0.1N NaOH.	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
July/August	28/07/2025-02/08/2025	1	3. To determine the percentage composition of acid mixture (strong acid and weak acid) by titrating against standard 0.1N NaOH.	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
August	04/08/2025-09/08/2025	1	4. To determine standard oxidation potential of Cu/Cu +2 and Zn/Zn+2	Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
August	11/08/2025-16/08/2025	1	4. To determine standard oxidation potential of Cu/Cu +2 and Zn/Zn+2	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
August	18/08/2025-23/08/2025	1	5. To determine solubility product of AgCl using potentiometer.	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
August	25/08/2025-30/08/2025	1	GANESH CHATURTHI HOLIDAY	Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
September	01/09/2025-06/09/2025	1	5. To determine solubility product of AgCl using potentiometer.	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
September	08/09/2025-13/09/2025	1	6. To determine formal redox potential of Fe+2/Fe+3 system using 0.1N K2Cr2O7.	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition

September	15/09/2025-20/09/2025	1	6. To determine formal redox potential of Fe+2/Fe+3 system using 0.1N K2Cr2O7.	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
September	22/09/2025-27/09/2025	1	7. To plot the orthonormal wavefunctions of a particle in a one dimensional box.	Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
September/October	29/09/2025-04/10/2025	1	8. Using vibrational-rotational spectra of HCl and HBr molecules a) Assign the rotational lines to various transitions. b) Calculate: i) The value of B0 and B1, for R and P branches of spectra ii) Vibrational frequency and iii) Internuclear distance	Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
October	06/10/2025-11/10/2025	1	Repetition	Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co., New Delhi, 2018, 18th edition
October	13/10/2025-18/10/2025	1	Exam	

Assessment Rubrics

Component	Max Marks	
ISA 1	-	
ISA 2	-	
Practical	25	
Project	-	
Semester		
End Exam	-	