Lecture Plan

Name of the college: Government College of Arts, science and Commerce Sanguelim Goa

Name of Faculty: Dr. Arati Panshekar Subject: Geography

Paper code: GOG-301 Principles of Remote Sensing Program: BA Division:

Academic year: 2025-26 Semester: V Total Lectures: 45

Course Objectives:

This course is designed to provide a comprehensive introduction to the fundamental principles and applications of remote sensing. The course will cover the basic concepts, technologies, and techniques used in remote sensing, with a focus on understanding the principles behind the collection and analysis of spatial data. The The Practical component of the course serves as an introduction to geospatial data analysis, focusing on fundamental concepts and practical skills. Participants will gain proficiency in utilizing key tools and techniques for interpreting and analyzing geospatial data.

Expected Course Outcome:

At the end of the successful completion of this course, students will be able to:

- 1. Comprehend the fundamental principles underlying remote sensing technology.
- 2. **Relate** the concepts of data acquisition to the characteristics of dif-ferent remote sensing platforms and sensors.
- 3. **Develop** skills in visually interpreting features and patterns in remote sensing imagery as well as in the application of remote sensing data in making informed decisions in agriculture, environmental manage-ment, urban planning, and disaster response.
- 4. **Demonstrate** a working knowledge of Remote Sensing tools and func-tionalities for basic geospatial analysis and **Develop** critical thinking skills for analyzing geospatial data .

Student Learning Outcome:

- 1. Understand the basic concepts, types, and historical development of remote sensing.
- 2. Identify various sensors, platforms, and how electromagnetic energy interacts with Earth's surface.
- 3. Explain how remote sensing data is acquired, processed, and interpreted for spatial analysis.

4. Apply remote sensing techniques to real-world applications like agriculture, environment, urban planning, and disaster management.

Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise/ Assignment	ICT Tools	Reference books
June	23-06-2025	28-06-2025	3	Definition and Basic Principles of Remote Sensing - Concept of remote sensing - Principles: energy source, transmission, interaction, sensor, data processing History and Evolution of Remote Sensing - Timeline from aerial photography to modern satellites - Major milestones and technological		Google meet/Power point presentation/ Moodle LMS	1. Campbell, James B., and Randolph H. Wynne. Introduction to Remote Sensing. Guilford Press, 2011. 2. Jensen, John R. Introductory Digital Image Processing: A Remote Sensing Perspective. Pearson, 2016. 3. Jensen, John R. Remote Sensing of the Environment: An Earth Resource Perspective. Pearson, 2016. 4. Lillesand, Thomas M., and Ralph W. Kiefer. Remote Sensing and Image Interpretation. Wiley,
July	30-06-2025 07-07-2025	05-07-2025 12-07-2025	3	developments Types of Remote Sensing: Active vs. Passive - Differences between active and passive systems - Examples and			

				applications (e.g., radar vs. optical)
	14-07-2025	19-07-2025	3	Types of Remote Sensing: Aerial vs. Satellite-Based - Characteristics and differences - Advantages and limitations
	21-07-2025	26-07-2025	3	The Electromagnetic Spectrum in Remote Sensing - Wavelengths used in remote sensing - Types of EM radiation and their roles (visible, IR, microwave)
	28-07-2025	02-08-2025	3	Energy Interactions with the Atmosphere and Surface - Absorption, reflection, transmission - Factors affecting image quality Remote Sensing
August	04-08-2025	09-08-2025	3	Platforms: Satellites, Aircraft, Drones, Ground Sensors - Overview of each

2015.

5. Maune, David F.
Digital Elevation Model
Technologies and
Applications: The DEM
User's Manual. ASPRS
Publications, 2007.

				platform
				– Use cases and
				platform selection
				criteria
				Types of Sensors:
				Optical, Thermal,
				Radar, and LiDAR
				– Sensor
				technologies and
				their capabilities
				– Example
				satellites/sensors
				<u>-</u>
	11-08-2025	16-08-2025	3	(e.g., Landsat,
	11-08-2025	10-08-2025	3	Sentinel, MODIS)
				Sensor
				Characteristics and
				Specifications
				– Spectral, spatial,
				temporal, and
				radiometric
				resolution
				Comparison
				between major
				sensors (e.g., IRS,
	18-08-2025	23-08-2025	3	SPOT, IKONOS)
	o 30-08-2025 (Chat	turthi		
vacation)				
				Image Resolution
				and Pixel Size
				Relationship
				between resolution
				and detail
September	01-09-2025	06-09-2025	3	Trade-offs in data

	l			acquisition
_				Georeferencing and
				Spatial Accuracy in
				Remote Sensing
				- Importance of
				georeferencing
				- Methods and tools
				used for spatial
	08-09-2025	13-09-2025	3	correction
	08-09-2025	13-09-2025	3	
				Remote Sensing
				Data Formats:
				Raster vs. Vector
				– Key differences,
				advantages, and
				uses
				– Examples of raster
				(satellite images)
				and vector
	15-09-2025	20-09-2025	3	(shapefiles) data
				Data Acquisition
				Techniques:
				Pushbroom vs.
				Whiskbroom
				Scanners
				– Working
				mechanisms
				Sensor examples
				and operational
	22-09-2025	27-09-2025	3	advantages
				Remote Sensing in
				Agriculture and Crop
				Monitoring
	29-09-2025	04-10-2025	3	 Vegetation indices,

1	1	İ		7
				yield estimation,
				stress detection
				 Precision farming
				applications
				Remote Sensing in
				Environmental and
				Coastal Monitoring
				 Land degradation,
				deforestation, water
				quality
				– Shoreline changes,
October	06-10-2025	11-10-2025	3	coral reef mapping
				Urban Planning,
				Land Use Mapping,
				and Disaster
				Management
				 Change detection,
				zoning, hazard
				assessment
				– Monitoring floods,
				earthquakes, forest
	13-10-2025	18-10-2025	3	fires

ISA 1	7.5
ISA 2	7.5
ISA 3	7.5
Practical	25
Project	1
Semester End	
Exam	60