Semester Lecture Plan

Name of the college: Government College of Arts, Science & Commerce, Sanquelim-Goa						
Name of Faculty: Mahendra R. Pednekar	Subject: Physics Major					
Paper code: PHY 206	Program/Course: S.Y. B.Sc.	Division:				
- wps. 40 dol. 222 200	110g. was coulded at 11 block	21,1010				
Academic year: 2025 - 2026	Semester: III	Total Lectures: 45				

Course Objectives:

This course provides a comprehensive overview of the learning outcomes for a course covering circuit analysis, inductance, DC and AC circuits, and the magnetic forces on moving charges and conductors. They serve as a guide for structuring lectures, laboratory work, and assessments in the course.

Course Learning Outcome: The students will be able to

- 1. Understand the basic principles of electric circuits.
- 2. Understand the behaviour and characteristics of inductors and analyze the role of inductance in electrical circuits.
- 3. Analyze the response of DC and AC circuits.
- 4. Understand the Lorentz force acting on a moving charged particle in a magnetic field.
- 5. Apply the right-hand rule to determine the direction of the force experienced by a current-carrying conductor in a magnetic field.
- 6. Understand the torque experienced by a current loop in a magnetic field.

Month Fr	Lectures From: To:	No. of lectures allotted	Topic, Subtopic to be covered	ICT Tools	Reference books
----------	-----------------------	--------------------------	-------------------------------	-----------	--------------------

	1				
				Circuit Analysis Standy	
				Circuit Analysis Steady current, concept of constant	
				current source and constant	
June				voltage source, Maxwells	
	20/6/25	28/6/25	05	cyclic current method for	
				circuit analysis, Thevenin's theorem	
				Practical: LCR series	
				Nortons theorem,	
	2015/27	- /- /		Superposition theorem,	
June/July	30/6/25	5/7/25	03	Practical: LCR Parallel	
				Maximum power transfer theorem. Inductance 10 Self-	
				inductance, Self-inductance	
				of two parallel wires carrying	
				equal current in opposite	
July	7/7/25	12/7/25	0.2	directions,	
	7/7/25	12/7/25	03	Practical : TheveninTheorem Self-inductance of co-axial	
				cables, Mutual inductance,	
				Coefficient of coupling.	
				Response of circuits	
				containing L, C and R to DC 5 Growth and decay of current	
				in L-R circuit,	
July	14/7/25	19/7/25	03	Practical : LR circuit	
				charging and discharging of	
	2.4.75.75			capacitor in C-R circuit and in	
July	21/7/25	26/7/25	03	a series LCR circuit.	

July/August	28/7/25	2/8/25	03	Practical: Repeat 1	
				A.C. circuits Content 5 8 A.C.	
				applied to L-R and C-R	
				circuits, Inductive and Capacitive reactance,	
				Impedance and Admittance,	
				the j operator,	
				Practical : CR charging	
August	4/8/25	9/8/25	03	discharging	
				AC applied to L-C-R circuits,	
				Series and Parallel	
				resonance. AC applied to	
				mutually coupled L-R circuits,	
August	11/8/25	16/8/25	03	Practical : CR circuit	
				Transformers. Force on a	
				Moving Charge Magnetic	
				induction B and magnetic	
	40/0/25	22/0/25	00	intensity H,	
August	18/8/25	23/8/25	03	Practical : Repeat 2	
				Lorentz force law, Work done by a magnetic field on	
				a moving charge, Force on a	
				moving charge, Magnetic	
				flux.	
September	2/9/25	6/9/25	03	Practical: Magnetic sensor	

September	8/9/25	13/9/25	03	Force on conductor carrying current 5 Force on a conductor carrying current in uniform magnetic field, rectangular current loop in external magnetic field, Practical: resistance of galvanometer	
	15/9/25		03	Dead beat galvanometer, Theory of Ballistic galvanometer. Torque on current loop 6 Torque on a current loop, Magnetic moment of a current loop,	
September		20/9/25		Practical : Magnetic field lines	
September	22/9/25	27/9/25	03	Equivalence of current coil to a bar magnet, Magnetic moment of atomic dipole, Angular momentum and gyromagnetic ratio. Practical: Revision	
September	22/3/23	21/9/25	03	Revision	
Sept/october	29/9/25	4/10/25	03	Practical Examination	
October	6/10/25	15/10/25	05	Problem solving	