Semester Lecture Plan

Name of the college: Government College of Arts, Science & Commerce, Sanquelim-Goa

Name of Faculty: Aga D. A. Subject: Physics (THEORY) and (PRACTICALS)

Paper code:-PHY- 300 Analog and Digital
Electronics
Program/Course: T.Y. B.Sc.
Division: A

Academic year: 2025 – 2026 Semester: V Total Lectures: 60 Plus Practicals

Course Objectives: This course aims to provide the students with a foundation in basic knowledge of Analogue and Digital Electronics.

Course Learning Outcome: The student after undergoing this course will be able to: 1. Describe and explain the basic function of a transistor, transistor as a Switch, Multivibrators using Transistors. 2) Explain FETs in detail 3) Design and Assemble the circuits of Voltage regulators using IC 78-- and 79—series. 4)Draw and Discuss the block diagram of IC555 and its use as Astable & Monostable multivibrator. 5) Illustrate the Number system logic and 6) Classify Flip Flops and Counters with diagram, truth table and waveforms.

Mont	h	Lectures From: To:		No. of lectures allotted	Topic, Subtopic to be covered	Learning outcome	ICT Tools	Reference books
JU	NE	20/06/2025	28/06/2025	05	Topic 1 Binary number system, Binary to Decimal and Decimal to Binary conversion	The student will be able to: 1. Describe and explain Binary number system, Binary to Decimal and	White board and marker	 Malvino and Leach, Digital Principles and Applications, TMH (1986). R. P. Jain, Modern Digital

					Decimal to Binary conversion, Preparation of 2 i/p, 3i/p and 4 i/p truth table		Electronics, TMH (2003).
June and July	30/06/2025	05/07/2025	04	Topic-1 Basic logic gates, NOT,OR, AND, gates	The student will be able to: . Describe and explain Basic logic gates, NOT,OR, AND, gates	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
JULY	07/07/2025	12/07/2025	04	Topic 1 NOR, NAND, and EX- OR, Bubbled OR and Bubbled AND gates	The student will be able to: 1) Describe and explain NOR, NAND, and EX- OR, Bubbled OR and Bubbled AND gates Verification of De Morgan	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
JULY	14/07/2025	19/07/2025	04	PRACTICAL Topic1 De Morgan's Law's,	De Morgan Laws and Boolean Identities. (Construction using Gates). The student will be able to:	White board and marker	1. Malvi

				Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits,	1. Describe and explain De Morgan's Law's, Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits,		no and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).J. Millman and C. Halkias, Electronic Devices and Circuits , Mc Graw Hill (1972).
			04	PRACTICAL	NAND and NOR gates as universal building blocks.		
JULY	21/07/2025	26/07/2025	04	Topic 2 Sum of Products methods and Product of Sum methods of representation of logical functions.	The student will be able to: 1. Describe and explain Sum of Products methods and Product of Sum methods of representation of logical functions.	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
			04	PRACTICAL Topic 2 Binary addition and Subtraction, Half	The student will be able to: . Describe and	White board and marker	1.Allen Mottershed, Electronic Devices and Circuits An Introduction: PHI
July and August	28/07/2025	02/08/2025	04	adder and Full adder, Multiplexer and Demultiplexer.	explain Binary addition and Subtraction, Half adder and		(1997). 2.Malvino, Electronic Principles,

				Encoders and decoders	Full adder, Multiplexer and		TMH (2007). J. Millman and C.
					Demultiplexer.		Halkias, Electronic
					Encoders and		Devices and Circuits,
					decoders		Mc Graw Hill (1972).
					Binary		, ,
					addition- Half		
					adder and Full		
					adder using		
			04	PRACTICAL	logic gates.		
							1. Malvino and
							Leach, Digital
					The student		Principles and
					will be able to:		Applications, TMH
					Explin Logic		(1986).
				Logic families –	families – DTL,		2. R. P. Jain,
				DTL, TTL	TTL Standard		Modern Digital
				Standard TTL	TTL NAND	White board	Electronics, TMH
AUGUST	04/08/2025	09/08/2025	03	NAND gate,	gate,	and marker	(2003).
					Digital		
					MULTIPLEXE		
			04	PRACTICAL	R		
					The student		
					will be able to:		
					Explain		
					Schottky TTL, ECL OR and		1. Malvino and
				Schottky TTL,	NOR gate,		Leach, Digital
				ECL OR and	MOS (inverter,		Principles and
				NOR gate, MOS	NAND and		Applications, TMH
				(inverter, NAND	NOR gates) and		(1986).
				and NOR gates)	CMOS		2. R. P. Jain,
				and CMOS	(inverter,		Modern Digital
				(inverter, NAND	NAND and	White board	Electronics, TMH
AUGUST	11/08/2025	16/08/2025	04	and NOR gates).,	NOR gates)	and marker	(2003).
			04	PRACTICAL	REVISION		

AUGUST	18/08/2025	23/08/2025	04	Transistors Multivibrators. Transistor as a switch, switching times, Multivibrators – Astable, Monostable,	The student will be able to: Explain Transistor as a switch, switching times, Multivibrators – Astable, Monostable,	White board and marker	Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
			04	PRACTICAL Topic Bistable	Study and analysis of transistorised Multivibrators- Astable, Monostable. The student		
September	02/09/202	06/09/2025	03	and Schmitt Trigger. Field Effect Transistors. Basic structure of the JFET, Principles of operation, Characteristic curves and parameters	will be able to: Explain Bistable and Schmitt Trigger. Field Effect Transistors. Basic structure of the JFET, Principles of operation,	White board and marker	Malvino and Leach, Digital Principles and Applications, TMH (1986 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
September	08/09/2025	13/09/2025	04 05	PRACTICAL	Study and analysis of transistorised Multivibrators-Astable, Monostable. The student	White board	2. 1. Malvino and

				Topic-6 Common source amplifiers, Common gate amplifier (only qualitative discussion), The MOSFET Depletion Mode and Enhancement mode,	will be able to: Explain 3 bit Shift register (shift left, shift right), Applications of FF's in counters, 3 bit count up/count down binary ripple counter,	and marker	Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
			04	PRACTICAL	Study and analysis of transistorised Multivibrators- Astable, Monostable.		
				Dual-Gate MOSFET. FET Phase shift oscillator, FET as VVR and its applications in Attenuator, AGC and Voltmeter circuits. Applications of OP-AMP. Active diode circuits, Intergrator, Differentiator,	The student will be able to: Explain Dual-Gate MOSFET. FET Phase shift oscillator, FET as VVR and its applications in Attenuator, AGC and Voltmeter circuits. Applications of OP-AMP. Active diode		1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain,
SEPTEMBER	15/09/2025	20/09/2025	04	Comparator, Window comparator,	circuits, Intergrator, Differentiator,	White board and marker	Modern Digital Electronics, TMH (2003).

		Schmitt Trigger, Waveform generator – Square wave, Triangular and Ramp Generator and monostable	Comparator, Window comparator, Schmitt Trigger, Waveform generator – Square wave, Triangular and Ramp Generator and monostable		
	04	PRACTICAL	Study and analysis of transistorised Multivibrators- Bistable, Schmitt trigger.		

SEPTEMBER	22/09/25	27/09/25	04	Voltage Regulation: Fixed voltage regulation using IC-78 & 79 series, adjustable voltage regulators using IC LM-317. Timers: IC-555 Timer: basic concept, block diagram, Monostable, Astable and Voltage controlled oscillator (VCO).	The student will be able to: Explain Voltage Regulation: Fixed voltage regulation using IC-78 & 79 series, adjustable voltage regulators using IC LM-317. Timers: IC-555 Timer: basic concept, block diagram, Monostable, Astable and Voltage controlled oscillator (VCO).	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
			04	PRACTICAL	Study and analysis of transistorised Multivibrators- Bistable, Schmitt trigger.		
Septembe r and October	29/09/2025	04/10/2025	04	Flip Flops and Counters :- Basic RS FF, Clocked RS FF, JK FF, D-type and T- type FF, Master Slave Concept,	The student will be able to: Explain Basic RS FF, Clocked RS FF, JK FF, D-type and T- type FF, Master Slave Concept,	White board and marker	H. S. Kalsi, Electronic Instrumentation: TMH (2004).

			04	PRACTICAL	F.E.T Characteristics & F.E.T Common Source Amplifier.		
October	06/10/25	11/10/25	04	Topic-3 bit Shift register (shift left, shift right), Applications of FF's in counters, 3 bit count up/count down binary ripple counter,	The student will be able to: Explain 3 bit Shift register (shift left, shift right), Applications of FF's in counters, 3 bit count up/count down binary ripple counter,	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003).
			04	PRACTICAL	F.E.T Characteristics & F.E.T Common Source Amplifier		
OCTOBER	12/10/25	15/10/25	04	Mod 3, Mod 5, Mod 7 Counters, BCD Decade Counter, Cascade	The student will be able to: Explain Mod 3, Mod 5, Mod 7 Counters,	White board and marker	1. Malvino and Leach, Digital Principles and Applications, TMH (1986). 2. R. P. Jain, Modern Digital Electronics, TMH (2003)
			04	PRACTICAL	Op-Amp as a square wave generator & integrator		

				The student will		1. Malvino and
			BCD Decade	be able to:		Leach, Digital
			Counter,	Explain BCD		Principles and
			Cascade BCD	Decade Counter,		Applications, TMH
			Decade	Cascade BCD		(1986).
			counters,	Decade counters,		2. R. P. Jain,
			Principle of	Principle of	White board	Modern Digital
OCTOBER	12/10/25	15/10/25	digital clock.	digital clock.	and marker	Electronics, TMH

^{*}Note: Data filled in the above form is sample data.