## **Semester Lecture Plan**

Name of the college: Government College of Arts, Science & Commerce, Sanquelim-Goa

Name of Faculty: Mahendra R. Pednekar

Subject: Physics Major

Paper code: PHY- 301 Atomic and Molecular Physics Program/Course: T.Y. B.Sc. Division:

Academic year: 2025- 2026 Semester: V Total Lectures: 60

Course Objectives: 1. To study atomic spectra of one and two valence electron atoms and change in behaviour in the presence of external weak magnetic field and strong magnetic field.

- 2. To Study X ray spectra and its characteristics.
- 3. To study spectra of diatomic molecules.
- 4. To

Course Learning Outcome: The students will be able to

- 1. Understand the concept spectra of one and two valence electrons.
- 2. Understand the fine structure of spectra of atoms in presence and absence of external magnetic field.
- 3. Explain X ray spectra, the concept of Auger effect and fluorescence yield.
- 4. Understand the spectra of diatomic molecules.
- 5. Understand the concept of of Raman effect and Raman spectra.

| Month | Lec<br>From: | tures<br>To: | No. of lectures allotted | Topic, Subtopic to be covered | Learning outcome      | ICT Tools | Reference<br>books |
|-------|--------------|--------------|--------------------------|-------------------------------|-----------------------|-----------|--------------------|
| June  |              |              |                          | Hydrogen Atom                 | Students will be able |           | Arthur Beiser,     |
|       | 20/06/25     | 28/06/25     | 06                       | Schrodinger's                 | to:                   |           | Perspectives of    |
|       |              |              |                          | equation for the H-           | 1.Apply spherical     |           | Modern Physics.    |
|       |              |              |                          | atom                          | polar coordinates to  |           | McGraw-Hill        |
|       |              |              |                          | separation of                 | H atom .              |           | International      |
|       |              |              |                          | variables                     | 2. Formulate          |           |                    |
|       |              |              |                          | Quantum numbers-              | Schrodinger's         |           | Editions.,         |
|       |              |              |                          | n, l, ml, spin,               | equation and solve it |           | Singapore.         |

|           |          |         |    | magnetic moment, J and mJ,  Angular momentum                                      | using separation of variables method. 3. Understand the significance of quantum numbers 4. Explain the angular momentum and magnetic moment due to orbital and spin motion. | Namjoshi A.V.,<br>Rao Jyoti A., (<br>1997 ) Atomic<br>and Molecular<br>Physics And<br>Electrodynamics.<br>Sheth Publishers<br>pvt. Ltd. Bombay.                                                 |
|-----------|----------|---------|----|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |          |         |    | Magnetic moment and Bohr magneton.  Many Electron Atoms Pauli exclusion principle | Students will be able to: 1.Explain the concept of magnetic moment and Bohr magneton. 2. Understand and apply Pauli exclusion principle.                                    | Arthur Beiser, (1999) Concepts Of Modern Physics. Tata McGraw- Hill Publishing Company Limited New Delhi. Namjoshi A.V., Rao Jyoti A., (1997) Atomic and Molecular Physics And Electrodynamics. |
| June/July | 30/06/25 | 5/7/25  | 04 | classification of<br>elements in<br>periodic table.                               | 3.Classify elements in periodic table                                                                                                                                       | Sheth Publishers pvt. Ltd. Bombay.                                                                                                                                                              |
| July      | 7/7/25   | 12/7/25 | 04 | Symmetric and Antisymmetric wave functions Electron configuration, Hund's rule    | Students will be able to:1.Define symmetric and antisymmetric wave function. 2.Write electron                                                                               | Arthur Beiser,<br>(1999)<br>Concepts Of<br>Modern Physics.<br>Tata McGraw-<br>Hill                                                                                                              |

|      |         |         |    | Spin orbit interaction,  Vector atom model,                                                        | configuration of elements. 3. State and apply Hund's rule. 4. Understand the concept of spin orbit interaction. 5. Apply vector atom model. | Publishing Company Limited New Delhi. Namjoshi A.V., Rao Jyoti A., (1997) Atomic and Molecular Physics And Electrodynamics. Sheth Publishers pvt. Ltd. Bombay.                                                                     |
|------|---------|---------|----|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 14/7/25 | 19/7/25 | 04 | Total angular momentum, L-S coupling,  J-J coupling.                                               | The students will be able to: 1.Evaluate total angular momentum 2.Understand the concept of LS coupling and JJ coupling                     | Arthur Beiser, (1999) Concepts Of Modern Physics. Tata McGraw- Hill Publishing Company Limited New Delhi. Namjoshi A.V., Rao Jyoti A., (1997) Atomic and Molecular Physics And Electrodynamics. Sheth Publishers pvt. Ltd. Bombay. |
| July | 21/7/25 | 26/7/25 | 04 | Atomic Spectra Spectroscopic notation, Selection rules (derivation from transition probabilities), | The students will be able to:  1. Explain spectroscopic notation or term symbols for atoms.                                                 | H.E.White H.Semat and J.R.Albright, Introduction to Atomic Physics, McGraw Hill Book                                                                                                                                               |

|             |         |        |    |                                                                                                                   | 2.list selection<br>rules for<br>transitions.                                                                                                                                    | Company Namjoshi A.V., Rao Jyoti A., ( 1997 ) Atomic and Molecular Physics And Electrodynamics. Sheth Publishers pvt. Ltd. Bombay.                                                                                      |
|-------------|---------|--------|----|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| July/August | 28/7/25 | 2/8/25 | 04 | Alkali metal type spectra, Principal, Sharp, Diffused and Fundamental series, fine structure in alkali spectra.   | The students will be able to: 1. Explain alkali metal type spectra. 2. Classify principal, sharp, Diffused, and fundamental series. 3. Explain fine structure in alkali spectra. | H.E.White H.Semat and J.R.Albright, Introduction to Atomic Physics, McGraw Hill Book Company Namjoshi A.V., Rao Jyoti A., ( 1997 ) Atomic and Molecular Physics And Electrodynamics. Sheth Publishers pvt. Ltd. Bombay. |
| August      | 4/8/25  | 9/8/25 | 04 | Atoms in a Magnetic Field Effects of magnetic field on an atom, The Stern-Gerlach experiment,  Larmor Precession, | The students will be able to: 1.Explain the behaviour of atoms in presence of magnetic field. 2.Explain the concept of Stern-Gerlach experiment.                                 | H.Semat and J.R.Albright, Introduction to Atomic and nuclear Physics, Chapman and Hall Namjoshi A.V., Rao Jyoti A., ( 1997 ) Atomic and Molecular Physics And Electrodynamics.                                          |

|        |         |         |    |                      |                       | Sheth Publishers  |
|--------|---------|---------|----|----------------------|-----------------------|-------------------|
|        |         |         |    |                      |                       | pvt. Ltd. Bombay. |
|        |         |         |    | The Normal           |                       | H.Semat and       |
|        |         |         |    | Zeeman effect,       |                       | J.R.Albright,     |
|        |         |         |    | Lande 'g' factor,    |                       | Introduction to   |
|        |         |         |    | Zeeman pattern in    |                       | Atomic and        |
|        |         |         |    | a weak field         |                       | nuclear Physics,  |
|        |         |         |    |                      | The students will be  | Chapman           |
|        |         |         |    |                      | able to:              | and Hall Arthur   |
|        |         |         |    |                      | 1.Explain Normal      | Beiser,           |
|        |         |         |    |                      | Zeeman effect         | Perspectives of   |
|        |         |         |    |                      | 2.Calculate lande g   | Modern Physics.   |
|        |         |         |    |                      | factor                | McGraw-Hill       |
|        |         |         |    |                      | 2.Explain concept     | International     |
|        |         |         |    | (Anomalous           | of Anamalous          | Editions.,        |
| August | 11/8/25 | 16/8/25 | 04 | Zeeman effect        | Zeeman effect.        | Singapore.        |
|        |         |         |    | X-ray Spectra        | The students will be  | H.Semat and       |
|        |         |         |    | Characteristic       | able to:              | J.R.Albright,     |
|        |         |         |    | spectrum,            | 1.Expalin the         | Introduction to   |
|        |         |         |    | Moseley's law,       | characteristics of    | Atomic and        |
|        |         |         |    | Explanation of X-    | Xray spectra.         | nuclear Physics,  |
|        |         |         |    | ray spectra on the   | 2.Understand          | Chapman           |
|        |         |         |    | basis of quantum     | Moseley's law.        | and Hall          |
|        |         |         |    | mechanics,           | 3. Explain Xray       | Namjoshi A.V.,    |
|        |         |         |    |                      | spectra on the basis  | Rao Jyoti A.,     |
|        |         |         |    |                      | of quantum            | ( 1997 ) Atomic   |
|        |         |         |    |                      | mechanics.            | and Molecular     |
|        |         |         |    |                      | 4. Understand the     | Physics And       |
|        |         |         |    | Energy levels and    | concept of energy     | Electrodynamics.  |
|        |         |         |    | characteristic X-ray | levels and xray       | Sheth Publishers  |
| August | 18/8/25 | 23/8/25 | 04 | lines,               | characteristic lines. | pvt. Ltd. Bombay. |
|        |         |         |    | X-ray absorption     |                       | H.Semat and       |
|        |         |         |    | spectra,             | The students will be  | J.R.Albright,     |
|        |         |         |    | Fluorescence and     | able to:              | Introduction to   |
|        |         |         |    | Auger effect.        | 1.Understand the      | Atomic and        |
|        |         |         |    | Spectra of Diatomic  | concept of Xray       | nuclear Physics,  |
| August | 25/8/25 | 30/8/25 | 04 | Molecules            | absorption spectra.   | Chapman           |

|           |        |         |    | Rotational energy<br>levels, Rotational<br>spectra,                                                                  | 2.Explain Fluorescence yield and Auger effect. 3. Explain the formation of spectra due to diatomic molecules. 4.Understand the concept of rotational energy levels and rotational spectra. | and Hall Namjoshi A.V., Rao Jyoti A., (1997) Atomic and Molecular Physics And Electrodynamics. Sheth Publishers pvt. Ltd. Bombay.                                                      |
|-----------|--------|---------|----|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| September | 2/9/25 | 6/9/25  | 04 | Rotational energy levels, Rotational spectra, (cont.) Vibrational energy levels,  Vibrational energy levels, (cont.) | The students will be able to: 1.understand the concept of vibrational energy levels.                                                                                                       | Banwell, Fundamentals of Molecular Spectroscopy, TMH (2012) Namjoshi A.V., Rao Jyoti A., (1997) Atomic and Molecular Physics And Electrodynamics. Sheth Publishers pvt. Ltd. Bombay.   |
| September | 8/9/25 | 13/9/25 | 04 | Vibration-Rotation spectra, Vibration-Rotation-Rotation spectra, Vibration-Rotation spectra,                         | The students will be able to: 1.Explain the theory of vibration rotation spectra.                                                                                                          | Banwell, Fundamentals of Molecular Spectroscopy, TMH (2012) Namjoshi A.V., Rao Jyoti A., ( 1997 ) Atomic and Molecular Physics And Electrodynamics. Sheth Publishers pvt. Ltd. Bombay. |

| September        | 15/9/25 | 20/9/25            | 04 | Fortrat Parabolas and explanation of band structure on its basis                                                                                 | The students will bw able to 1.Explain the concept of Fortrat parabolas ad explain the formation of band structure on its basis.                                            | Banwell, Fundamentals of Molecular Spectroscopy, TMH (2012) Namjoshi A.V., Rao Jyoti A., ( 1997 ) Atomic and Molecular Physics And Electrodynamics. Sheth Publishers pvt. Ltd. Bombay.            |
|------------------|---------|--------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |         |                    |    | Raman Effect Raman Effect: Classical and Quantum mechanical explanation,                                                                         | The students will be able to:  1.State Raman effect 2.Give classical and quantum mechanical explanation for Raman effect. 3. Explain the formation of pure rotational Raman | G. Arhuldas, Molecular Structure & Spectroscopy, PHI. Namjoshi A.V., Rao Jyoti A., (1997) Atomic and Molecular Physics And Electrodynamics. Sheth Publishers                                      |
| September/octber | 29/9/25 | 27/9/25<br>4/10/25 | 04 | Raman spectra, Pure rotational Raman spectra, Vibrational Raman spectra, Rotational fine structure,  Experimental set up for Raman spectroscopy. | The students will be able to: 1.Explain pure vibrational Raman spectra. 2.Understand the concept of rotational fine structure. 3.Describe the experimental set up           | pvt. Ltd. Bombay.  G. Arhuldas, Molecular Structure & Spectroscopy, PHI. Namjoshi A.V., Rao Jyoti A., (1997) Atomic and Molecular Physics And Electrodynamics. Sheth Publishers pvt. Ltd. Bombay. |

|         |         |          |    |                         | for Raman spectroscopy. |  |
|---------|---------|----------|----|-------------------------|-------------------------|--|
| 6/10/25 | 6/10/25 | 15/10/25 | 07 | Discussion and revision |                         |  |
|         |         |          |    |                         |                         |  |