

EVEN SEMESTER LECTURE PLAN (AY 2025-2026)

Name of the college: Government College of Arts, Science and Commerce, Sanquelim Goa							
Name of Faculty: Dr. Nisha Kevat				Subject: Molecular Biology and Genetic Engineering (THEORY)			
Paper code: BOT 306				Program/Course: T.Y B.Sc.		Division: - NIL	
Academic year: 2025 - 2026				Semester: VI		Total Lectures: 45 (Theory)	

Course Objectives:

1. Provide students with a comprehensive understanding of the principles of molecular biology.
2. Familiarize students with intricacies of genetic code and mechanisms of DNA replication, transcription and translation.
3. Enable students to understand the techniques used in recombinant DNA technology.
4. Impart knowledge of the applications of recombinant DNA technology and the ethical concerns related to it.

Course Learning Outcome:

1. Recall the structures of nucleic acids and characteristics of the genetic code.
2. Understand the fundamental concepts of DNA replication, transcription, translation, gene organization, gene regulation and recombinant DNA technology.
3. Apply the acquired knowledge of genetic engineering principles, methods of gene transfer in plants and DNA analyses to modify genetic material leading to production of novel crops and products.
4. Analyse the various applications of genetic engineering and their ethical concerns.

Month	Lectures From: To:		No. of lectures allotted	Topic, Subtopic to be covered	Exercise/Assignments	ICT Tools	Reference books
Week 1 December	1/12/2025	6/12/25	03	Lecture 1: DNA/RNA as carriers of genetic information (Hershey & Chase experiment)	Students prepare a one-page comparison table of Hershey–Chase and Fraenkel-Conrat experiments highlighting organism used, method, and conclusion.	Power Point Presentation, Chalk Board, You Tube	1. Agarwal, P (2017). Basic Concepts of Genetic Engineering. Pearson India Education Services,
				Lecture 2: Fraenkel Conrat's experiment).			

				Lecture 3: Salient features of Watson and Crick's model of DNA;	Students draw a labelled diagram of DNA and write 5 salient features (antiparallel strands, base pairing, hydrogen bonds).	Videos	Chennai. 2. Alberts, B, Johnson, A, Lewis, J, Raff, M, Roberts, K and Walter, P (2014). Essential Cell Biology. 4th edition. Garland Science, New York.
Week 2 December	8/12/25	13/12/25	03	Lecture 4: Denaturation and renaturation of DNA	Students explain in 5-6 lines how temperature and GC content affect DNA melting and reannealing.	Power Point Presentation, Chalk Board, You Tube Study Videos	3. Brown, TA (2017). Genomes 4. 4th edition. Garland Science, New York. 4. Chatterjee, R (2015). Molecular Biology of the Gene. Sapna Book
				Lecture 5: RNA and its types	Prepare three flash cards (mRNA, tRNA, rRNA) mentioning structure and function.		
				Lecture 6: Replication of DNA: Characteristics of the genetic code;	Students create a simple flow chart showing steps of DNA replication and list one key feature of each replication model (theta, rolling circle, linear DNA).		
Week 3 December	15/12/25	20/12/25	03	Lecture, 7: Central and revised dogma of molecular biology	Students create a simple flow chart showing steps of DNA replication and list one key feature of each replication model (theta, rolling circle, linear DNA).	Power Point Presentation, Chalk Board, You Tube Study Videos	5. Dubey, RC (1993). A Textbook of Biotechnology. S. Chand and Company Pvt. Ltd., New Delhi. 6. Glick, BR and Pasternak, JJ (2003). Molecular Biotechnology: Principles and Applications of Recombinant DNA. ASM Press, Washington D.C.
				Lecture 8: mechanism of DNA replication			
				Lecture 9: models of DNA replication (rolling circle model; theta replication,			
Week 4 December	15/12/25	20/12/25	03	Lecture 10: Replication of linear ds DNA).	Students create a simple flow chart showing steps of DNA replication and list one key feature of each replication model (theta, rolling circle, linear DNA).	Power Point Presentation, Chalk Board, You Tube Study Videos	7. Griffiths, AJ, Miller, JH, Suzuki, DT, Lewontin, RC and Gelbart, WM (2000).
				Lecture 11: Transcription and translation: Features of transcription and post-transcriptional processing.	Students write a stepwise pathway from DNA → RNA → Protein in 10 bullet points .		

				Lecture 12: Features of translation and post-translational modification.			An Introduction to Genetic Analysis. W. H. Freeman, New York.
Week 5 January	2/01/26	3/01/26	01	Lecture 13: Gene organization and regulation - Gene organization and regulation in prokaryotes (lac-operon model)	Prepare a table comparing lac operon, trp operon, and eukaryotic gene regulation (inducer/repressor, regulation type).		8. Khushu, S (2019). Molecular Genetics and Biotechnology. ABD Publishers, Jaipur.
Week 6 January	5/01/26	10/01/26	03	Lecture 14: trp operon model Lecture 15: Gene organization and regulation eukaryotes. Lecture 16: Module 2: Techniques in genetic engineering Recombinant DNA technology: Concept of recombinant DNA technology;	Prepare a table comparing lac operon, trp operon, and eukaryotic gene regulation (inducer/repressor, regulation type). Students list restriction enzyme, ligase, vector , and write one function each .	Power Point Presentation, Chalk And Board, You Tube Study Videos	9. Klug, WS, Cummings, MR, Spencer, CA and Palladino, MA (2017). Concepts of Genetics. 11th edition. Pearson Education, Boston. 10. Kulkarni, VM (2018). Molecular Biology: Concepts and Applications. McGraw-Hill Education, New Delhi.
Week 7 January	12/01/2026	17/01/26	03	Lecture 17: Steps in genetic engineering Lecture 18: Enzymes used in recombinant DNA technology (restriction enzymes, DNA ligases). Lecture 19: cloning vectors (pBR322, Ti Plasmid	Students list restriction enzyme, ligase, vector , and write one function each . Match the vector (pBR322, Ti plasmid, YAC, λ phage) with its application .	Power Point Presentation, Chalk And Board, You Tube Study Videos	11. Lewin, B (2019). Genes XII. Jones & Bartlett Learning, Sudbury, MA.
Week 8 January	19/01/2026	24/01/26	03	Lecture 20: YAC, λ phage, cosmid Lecture 21: Construction of genomic library Lecture 22: Methods of gene transfer in plants: <i>Agrobacterium</i> mediated	Match the vector (pBR322, Ti plasmid, YAC, λ phage) with its application . Explain the concept of a genomic library in 6–8 simple sentences . Draw and label Agrobacterium-mediated gene transfer and name one selectable and one reporter gene	Power Point Presentation, Chalk And Board, You Tube Study Videos	12. Lewin, B, Cassimeris, L, Lingappa, VR, Plopper, G and Sakai, RK (2015). Genes IX. Jones & Bartlett Learning, Sudbury, MA. 13. Lodish, H, Berk, A, Kaiser, CA,
Week 9 January	27/01/2026	31/01/26	02	Lecture 23: Gene gun (biolistic) method;	Draw and label Agrobacterium-mediated gene transfer and name	Power Point Presentation,	

				Lecture 24: Selectable marker (antibiotic resistance)	one selectable and one reporter gene	Chalk Board, Tube Videos	And You Study	Krieger, M, Bretscher, A and Ploegh, H (2015). Molecular Cell Biology. W.H. Freeman, New York.		
Week 10 February	2/02/26	7/02/26	03	Lecture 25: Scorable marker/reporter genes (luciferase, GUS, GFP).	Match PCR, Southern blot, DNA sequencing, RFLP with their specific use .			14. Malacinski, GM (2019). Essentials of Molecular Biology. Jones & Bartlett Learning, Sudbury, MA.		
				Lecture 25: Methods of DNA analyses: Southern, Northern and Western blotting;				15. Nagar, S and Adhav, M (2009). Practical Biotechnology and Plant Tissue Culture. S. Chand and Company Ltd., New Delhi.		
				Lecture 26: Polymerase Chain Reaction (PCR);				16. Primrose, SB and Twyman, RM (2006). Principles of Gene Manipulation and Genomics. 7th edition. Wiley-Blackwell, Hoboken, New Jersey, United States.		
Week 11 February	9/02/26	14/02/26	03	Lecture 27: DNA sequencing (Sanger & Coulson's method,	Match PCR, Southern blot, DNA sequencing, RFLP with their specific use .	Power Point Presentation, Chalk Board, Tube Videos	And You Study	17. Purohit, SS (2008). Biotechnology: Fundamentals and Applications. Agrobios, Jodhpur.		
				Lecture 28 Maxam & Gilbert's method);				18. Rao, CR (2016). Molecular Biology and Genetic Engineering. Universities Press,		
				Lecture 29: fingerprinting technique (RFLP).						
Week 12 February	16/02/26	21/02/26	03	Lecture 30: fingerprinting technique (RFLP).	Match PCR, Southern blot, DNA sequencing, RFLP with their specific use .	Power Point Presentation, Chalk Board, Tube Videos	And You Study			
				Lecture 31: Module 3: Applications of genetic engineering and ethical concerns of GM crops .Applications of genetic engineering:	Students choose GM product (Bt cotton, and write advantages and use .					
				Genetically engineered plants for pest resistance (Bt-cotton);						

				Lecture 32: herbicide resistance (Roundup Ready soybean)	Students choose GM product (Roundup Ready soybean) and write advantages and use .		Hyderabad. 19. Russell, PJ (2010). i-Genetics - A Molecular Approach. 3rd edition. Benjamin Cummings, U.S.A. 20. Sharma, A (2017). Principles of Genetic Engineering. Tech-Max Publications, Mumbai. 21. Singh, R (2016). Genetic Engineering: Fundamentals and Applications. PHI Learning Private Limited, New Delhi.		
Week 13 February	23/02/26	28/02/26 6	03	Lecture 33: Improved nutritional content (golden rice);	Students choose GM product (Golden rice) and write advantages and use .	Power Point Presentation, Chalk And Board, You Tube Study Videos	Hyderabad. 19. Russell, PJ (2010). i-Genetics - A Molecular Approach. 3rd edition. Benjamin Cummings, U.S.A. 20. Sharma, A (2017). Principles of Genetic Engineering. Tech-Max Publications, Mumbai. 21. Singh, R (2016). Genetic Engineering: Fundamentals and Applications. PHI Learning Private Limited, New Delhi.		
				Lecture 34: extended shelf life (Flavr Savr tomato);	Students choose GM product (Flavr Savr tomato) and write advantages and use .				
				Lecture 35: Production of pharmaceuticals (edible vaccines);	Write the flow chart of Edible vaccine formation				
Week 14 March	2/03/26	7/03/26	03	Lecture 36: phytoremediation (<i>Arabidopsis</i> , poplar);	Conduct a review of literature to find more plants used for Phytoremediation	Power Point Presentation, Chalk And Board, You Tube Study Videos	Hyderabad. 19. Russell, PJ (2010). i-Genetics - A Molecular Approach. 3rd edition. Benjamin Cummings, U.S.A. 20. Sharma, A (2017). Principles of Genetic Engineering. Tech-Max Publications, Mumbai. 21. Singh, R (2016). Genetic Engineering: Fundamentals and Applications. PHI Learning Private Limited, New Delhi.		
				Lecture 37: production of biofuels (switchgrass)	Conduct a review of literature to find more plants used for biofuels				
				Lecture 38: Genetically engineered microorganisms for bioremediation (superbug);	Conduct a review of literature to find more plants used for Bioremediation				
Week 15 March	9/03/26	14/3/26	03	Lecture 39: Production of pharmaceuticals (humulin, HGH).	Prepare a flowchart for the process of Humulin Production	Power Point Presentation, Chalk And Board, You Tube Study Videos	Hyderabad. 19. Russell, PJ (2010). i-Genetics - A Molecular Approach. 3rd edition. Benjamin Cummings, U.S.A. 20. Sharma, A (2017). Principles of Genetic Engineering. Tech-Max Publications, Mumbai. 21. Singh, R (2016). Genetic Engineering: Fundamentals and Applications. PHI Learning Private Limited, New Delhi.		
				Lecture 40: Ethical concerns of GM crops: Potential harm to human health;	Write a short note (150 words) on any one ethical concern of GM crops (health, environment, farmers) .				
				Lecture 41: potential damage to the environment;					
Week 16 March	16/03/26	21/03/26 6	03	Lecture 42: Environment; negative impact on traditional farming practice; excessive corporate dominance		Power Point Presentation, Chalk And Board, You	Hyderabad. 19. Russell, PJ (2010). i-Genetics - A Molecular Approach. 3rd edition. Benjamin Cummings, U.S.A. 20. Sharma, A (2017). Principles of Genetic Engineering. Tech-Max Publications, Mumbai. 21. Singh, R (2016). Genetic Engineering: Fundamentals and Applications. PHI Learning Private Limited, New Delhi.		

				Lecture 43: excessive corporate dominance	-	Tube Videos	
				Lecture 44: REVISION	REVISION		
Week 17 March	23/03/26	28/03/26	03	Lecture 45: REVISION	REVISION	Discussion	
				Lecture 46: REVISION	REVISION		
				Lecture 47: REVISION	REVISION		
Week 18 March/April	30/03/26	31/3/26	02	Lecture 48: REVISION	REVISION		
				Lecture 49: REVISION	REVISION		

*Note: Data filled in the above form is sample data.

* Assessment Rubrics

Component	Max Marks
ISA 1	7.5
ISA 2	7.5
ISA 3 (Best 2 of 3)	7.5
Practical	NA
Project	NA
Semester End Exam	80