

	Month	Lecture From	Lecture To	No. of lectures allotted	Topic, Subtopic to be covered	Exercise/Assignment	ICT Tools	Reference books	
	December	08-12-2025	17-12-2025	04	SOLAR RADIATION: Role and potential of new and renewable sources, the solar energy option, Environmental impact of solar power, structure of the sun, the solar constant, sun-earth relationships, coordinate systems and coordinates of the sun, extra-terrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data, numerical problems. Photo voltaic energy conversion – types of PV cells.	Students are required to list at least five Solar-Related Elements from each of the three groups—(A) Sun-Earth Relationship Concepts, (B) Types of Solar Radiation, and (C) Solar Energy Technologies	Smart Board - Power Point Presentation	Sukhatme S.P. and Nayak J.K. Solar Energy – Principles of Thermal Collection and Storage, Tata McGraw Hill,1984.	

								Sukhatme S.P. and Nayak J.K. Solar Energy – Principles of Thermal Collection and Storage, Tata McGraw Hill,1984.	
	December- January	23-12-2025	07-01-2026	02	SOLAR ENERGY COLLECTION: Flat plate and concentrating collectors, classification of concentrating collectors, orientation.		Smart Board - Power Point Presentation		
	January	09-01-2026	14-01-2026	03	SOLAR ENERGY STORAGE AND APPLICATIONS: Different methods, sensible, latent heat and stratified storage, solar ponds, solar applications- solar heating/cooling technique, solar distillation and drying, solar cookers, central power tower concept and solar chimney.	Students will be given a blank world map on which they need to highlight the major global regions that have high potential for Solar Energy, Wind Energy, and Biomass Energy. Each student must colour or mark these zones using different colours and label at least	Smart Board - Power Point Presentation, Discussion	D.Yogi Goswami, Frank Krieth & John F Kreider Principles of Solar Engineering,4th edition,Taylor & Francis, 2022.	

						two examples from each energy type.			
	January	16-01-2026	21-01-2026	02	WIND ENERGY: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, betz criteria, types of winds, wind data measurement.		Smart Board - Power Point Presentation, Discussion	Khan B.H ,Non-Conventional Energy Resources, Tata McGraw Hill, New Delhi, 2006.	
	January	28-01-2026	30-01-2026	02	BIO-MASS: Principles of bio-conversion, anaerobic/aerobic digestion, types of bio-gas digesters, gas yield, utilization for cooking, bio fuels, I.C. engine operation and economic aspects.		Smart Board - Power Point Presentation, Flipped Classroom	Khan B.H, Non-Conventional Energy Resources, Tata McGraw Hill, New Delhi, 2006.	
	February	04-02-2026	06-02-2026	02	GEOTHERMAL ENERGY: Resources, types of wells, methods of		Smart Board - Power Point Presentation	Khan B.H, Non-Conventional Energy Resources, Tata McGraw Hill, New Delhi, 2006.	

February- March	25-02-2026	06-03-2026	04	MECHANICAL SYSTEMS: Fuel cells- principle, thermodynamic 15 Hours aspects, selection of fuels & working of various types of fuel cells, environmentally friendly and Energy efficient compressors and pumps. Environmental impact of the current manufacturing practices and systems, benefits of green manufacturing Environmental impact of the current manufacturing practices and systems, benefits of green manufacturing systems, selection of recyclable and environment	Smart Board - Power Point Presentation	Khan B.H ,Non- Conventional Energy Resources, Tata McGraw Hill, New Delhi, 2006.		

	* Assessment Rubrics								
		Component	Max Marks						
		ISA 1	05						
		ISA 2	05						
		Semester End Exam	40						
		Total	50						